
Workshop: Wildlife Data Analysis
Using Program R

Robert C. Lonsinger

University of Wisconsin-Stevens Point
College of Natural Resources

Carnivore Ecology and Conservation Lab

28 January 2018

Milwaukee, Wisconsin

ii

TABLE OF CONTENTS

PREPARING FOR THE WORKSHOP ... 1
OBJECTIVES .. 2
INTRODUCTION & BACKGROUND .. 2
INSTALLING R ... 3
THE R GUI & CONSOLE ... 4
 Alternative R GUIs ... 5
R SYTAX & COMMAND LINE ENTRIES .. 6
 Methods() ... 7
 Search Methods .. 7
 Variables.. 10
 Types of variables ... 11
 Operators .. 12
REFERENCING YOUR DATA .. 13
THE R WORKSPACE .. 16
 Importing data .. 18
 Exporting data ... 22
METADATA ... 22
PACKAGES & SCRIPTS ... 23
DATA MANAGEMENT ... 24
 cbind() .. 25
 rbind() ... 26
 merge() .. 27
 sort() and order() .. 27
 subset() ... 28
DESCRIPTIVE STATISTICS .. 29
 Dealing with NAs ... 30
IMPLICIT LOOPS ... 31
 sapply() and tapply() ... 31
PARENTHESES & BRACKETS ... 32
CONDITIONAL STATEMENTS .. 33
LOOPING LANGUAGE ... 34
 while() and for() .. 34
USER DEFINED FUNCTIONS .. 36
SIMULATIONS ... 37
GRAPHICS ... 39
 Common plotting methods and arguments ... 39
 Arguments plot ... 40
 Plotting examples.. 41

1

PREPARING FOR THE WORKSHOP

This workshop is intended to be in introduction to R and to provide participants with the ability
to manage and prepare data for complex analyses in R. This necessitates that the workshop
start with the most basic operations in R. Still, the workshop ramps up to complicated user
defined functions, looping constructs, and simulation capabilities.

Workshop attendees can take several approaches to participating and benefiting from this
workshop. One strategy (1) is to forego the computer and use this document to follow along
and take notes as the instructor demonstrates the functionalities of R. This strategy has worked
well for some, because all of the course materials (e.g., R code, explanations) are available to
participants and can later be run and manipulated at an individual’s preferred speed. Another
strategy (2) is to bring a laptop and run the code that is being demonstrated on your own
during the workshop, allowing yourself to become more comfortable with using R. This works
well for those with some previous exposure to R and/or those comfortable with simultaneously
following along and coding. A final strategy (3) would be to combine the first two: bring your
laptop and run the code that is being demonstrated during the workshop initially, but to forego
trying to run the more complex code that limits your ability to follow along. This strategy tends
to be the most employed and allows participants to pay closer attention to the detailed code
structuring and information provided by the instructor when working with the looping and
simulation functionality.

If you intend to apply either of the latter two strategies (i.e., you want to have your laptop and
the potential to run code), you will need to install the necessary programs, packages, and data
prior to the start of the workshop, because the convention center will not be offering wireless
internet. Specifically, you should take the following steps prior to arriving at the workshop:

1. Install R (This step requires that you have internet access)

 Details for installing R can be found below on Page 3.
2. Load necessary packages and import data sets

 After installing R, open R and type “getwd()” (without quotes) into the R console.
R will return the identity of your working directory (example on Page 19 below).

 From the folder that you downloaded (i.e., MW.Workshop), navigate to the
DataFiles folder, select the 6 data files, and copy these directly into your working
directory folder (i.e., the location identified by the getwd() function).

 From the MW.Workshop folder, open the MW.Workshop.R file with a simple
text editor (e.g., Notepad++ or Notepad).

 In R, run the code at the beginning of the MW.Workshop.R file between “##Load
Workshop files - Start” and “##Load Workshop files - End” by copying and
pasting this code into the R Console. This code will attempt to load necessary
packages and files to R. You may be prompted to select a CRAN mirror. If so,
simply select a USA CRAN mirror close to you (e.g., KS)
(This step requires that you have internet access)

 Close R, but be sure to select “Yes” to save the workspace image when asked.

2

OBJECTIVES

To introduce participants to the functionality of R and to provide the knowledge necessary to
effectively begin using R

To provide a foundation on syntax and R programming code that will allow users to interpret
and therefore utilize the R language

To introduce participants to the benefits and structures of looping functionality an user defined
functions, and give participants the opportunity to explore these capabilities within R

This course is not a statistical course or a complete review of R

INTRODUCTION & BACKGROUND

What is R?

• R is an open source software environment for statistical computing and graphics
• R is a fully functional programming language
• R is quickly becoming an industry standard
• R is a free alternative to costly data analysis software

Advantages of using R:

1. Cost

 Downloaded FREE of charge
2. Convenience

 Accessible through the Comprehensive R Archive Network (CRAN) along with
thousands of data analysis/graphing packages

 Scripts can be used to store detailed accounts of how you managed, modified,
and analyzed you data.

3. Community

 The R community is comprised of hundreds of thousands of users that are
working on developing code, improving performance, and providing support

 The R Core Development Team ensures packages meet documentation and
quality standards

4. Capability

 Comparable or superior to commercial data analysis/graphic packages

 Great for analyzing data, conducting simulations, testing new algorithms, and
plotting graphics

 Users (including you) can modify code to meet your needs and can extend R’s
capabilities by contributing packages

3

Disadvantages of using R:
1. Programming can be intimidating

 It is critical that users with no or limited programming experience start using R to
accomplish simple data management and summary statistic procedures. This will
allow users to begin using R without feeling like they are programming. They can
then become comfortable with the syntax and eventually transition into more
complex coding and programming as their needs and experience grows.

 The only way to learn R, is to use R
2. Available code (online) may not be tested

 Although the functionality downloaded through the CRAN has been tested, code
available through one of the thousands of independent websites and/or forums
may not always be tested

 This does not mean you should not use these resources or this code, but rather,
that you should be able to interpret the R language and ensure that code is
performing the desired task before implementation

3. Packages may lack desired operations or may be overlapping

 Packages are often designed by individuals or teams to meet their specific needs

 Some packages have some of the same procedures or methods (though they
may have been named differently)

 Other desired operations may be lacking, or may be difficult to find
4. Technically, no technical support

 Although R does not provide a technical support department, there are an
unprecedented number of user based help pages, forums, and email list-serves

 The R community provides all of the unofficial technical support that one may
need

INSTALLING R

 Visit the official R Website (www.r-project.org) and click on the “download R” link

 Scroll through the available CRAN Mirror sites and select the site located closest to you

 Select the download that corresponds to your operating system (i.e., Linux, Mac, or
Windows)

 Downloading for the first time: Select the “base” subdirectory

 Click on the “Download R” link, which indicates the version and the operating system

 When given the option, choose the “Run” option for the executable

 Walk through the Setup Wizard then click “Finish”– Recommend using all of the default
settings

http://www.r-project.org/

4

THE R GUI & CONSOLE

Navigate to your programs and click on R to launch the R GUI (Graphical User Interface)

 Alternatively, during set up you may have added a quick launch icon to your start menu
or desktop

The R GUI:

 May have a slightly different appearance and/or layout on different platforms

 The standard R GUI is very basic, and has only limited functionality

 While this does not limit the capability of R, it can make producing complex algorithms
or scripts cumbersome

 There are a few quick key icons for loading and saving you workspace, for copying and
pasting, and stopping and printing

 More options can be found through the drop down tabs (Recommendation: before you
start working in R, take a moment to go through the options available and familiarize
yourself with the Console and drop down tab functionalities)

The R Console:

 Where you enter your commands and instruct R on what you would like to do

 The command line is indicated by a prompt, which looks like a greater than sign “>”

 Following an entry to the command line, press the enter button and R will perform
some task and/or return some value or character

 If a command is incomplete when you press enter, the next line will begin with a
continuation sign “+” rather than a “>”, indicating that you need to still complete the
expression on the line(s) above

5

Alternative R GUIs:

 There are a number of alternative R GUIs that have been developed and that can be
downloaded free of charge

 These GUIs often offer improved code management by providing formatting options,
coloring of code, and direct running of code in R

 They also allow you to SAVE your code so that you can rerun analyses, reuse you code,
and recall how your analyses were conducted

A list of some alternative R GUIs:

RStudio There are many more alternative GUIs. Many GUIs
Tinn-R (pictured below) are platform specific, so explore which will work on
R Commander your operating system
Rattle GUI
RKWard Each have different benefits, so it is important to
RExcel find the GUI that meets your needs and style of use
Eclipse with StatET
RapidMinor R extension

6

R SYNTAX & COMMAND LINE ENTRIES

A few syntax items that are used frequently and that you should be able to recognize quickly:

<- Assignment notation; creates objects

 The left arrow (a combination of the less than and dash), is the assignment
notation and is used to assign values or results to an object symbol

Comment notation

 The comment notation is incredibly valuable and I would suggest that as you
learn R, that you notate your code with comments to help you keep track of
what each line of code is doing

 The comment notation tells R that everything to the right of the “#” is a
comment and does not have any inherent interpretation in R

 Can be used in data that is being imported to support metadata (e.g.,
comments on data collection procedures, challenges, or potential data
complications)

c() Concatenate method joins values together into a vector

 The concatenate method is used very frequently and is used to create a
vector, or string of values (or characters) that are joined together in order
and that can be referenced by its location in the vector

: Series notation

 The series notation creates a sequential series from the first value to the
second value in a step-wise fashion by increments of 1

Example:
 > x<-c(1:10) #store the vector 1, 2, …, 10 as x
 > x
 [1] 1 2 3 4 5 6 7 8 9 10

 We are calling a function, concatenate(), denoted by c(), and we are telling it to
create a vector of 10 values numbered 1 to 10, and to assign these values to the
object symbol x

 We are storing the resulting vector to x, so R does not print the results to the screen

 To see the results, we must call x

 Note that the “[1]” index indicates that the number immediately to the right of the
index is the FIRST element of the vector x

7

Three Types of entries to the command line prompt:
1. Methods() – an object that does something in R

 Often referred to as a function

 Easily distinguishable because they are followed by ()

 Depending on the complexity, may or may not require arguments within the ()

May have named arguments that can be passed to the function by placing them in the ()

> Function(argument1=value1, argument2=value2,…)

 Separate multiple arguments with commas

 If arguments are in their defined order and all arguments are included, then the
argument names can be omitted

Three Sources of Methods:

 Many methods built into the base R download

 Many more available via packages

 Can create your own methods

*Note: It is critical to review the help page for methods with help(method) or ?method to
obtain the description, arguments, usage, and examples

Frequently used help/search methods:

> help() or > ?

 Allows you to View the html format for a specific function or method in R

 Does not require internet access

 Requires that you know that name of the function/method

 Must pass the name of the function to help(function) or ?function as an argument

> help.search() or > ??

 “Fuzzy search” allows you to search without knowing the exact name

 Does not require internet access

 Must pass some name or partial name, such as fisher for fisher.test, to
help.search("fisher") or ??fisher as an argument

 Note: help.search() requires " ", while ?? does not

Example of arguments in their natural order with the rnorm() function:

rnorm() #Method that selects n random numbers from a normal distribution

> rnorm(n, mean=0, sd=1) #Usage outlined under help(rnorm)

 Because the mean and sd are set to specific values, omission of these arguments will tell
R to use the default values

8

> rnorm(100) #Requires n; defaults for mean and sd
> rnorm(100, mean=2, sd=1) #Change mean and sd
> rnorm(100, 2, 1) #same, with argument names omitted

Returns a vector of 100 values drawn at random from a normal distribution with a mean of 2
and standard deviation of 1

Example of a method and the use of arguments with the ls() function:

ls() #Lists the objects in your workspace

 Excludes objects starting with a “.” unless the argument “all.names” is set to TRUE

> help(ls) #First look at the usage as outlined with the help() method

9

The argument “pattern” allows you to use ls() to effectively search your workspace:

#Search for all objects with the pattern "transect" within name

The argument “pattern” combined with a “grep” pattern (^) further refines the search”:

#Search for all objects that begin with the pattern "transect"

10

2. Variables – an object that stores data/information

 Objects operated on by R

Naming standards (apply to methods as well):

 CaSe SeNsItIve
 my.data1 These are all different variables
 My.data1 because they each use a different
 MY.DATA1 combination of upper and lower case

 May contain letters, numbers, periods, and underscores
• Should always start with a letter
• Because system variables start with a “.”, these variables are not listed with ls()
• Cannot have spaces; words are usually separated with a period

Variables can be used to store:

 Simple values and expressions
 > x<-6 #read as “x gets 6”
 > y<-4 #does not print by default, because value is being stored
 > x+y #prints by default to console (value not being stored to an object)
 [1] 10

 > z<-x+y #substitution occurs during assignment

> z #Subsequently changing the value of x will not change z
[1] 10 #[1] indicates that the following value of 10 is the first element

 Results of a method
> Y<- c(1:3,5:8)*8 #Concatenate the series 1 to 3 and 5 to 8, then multiply each by 8
> Y #Note, capital Y is different from the lowercase y above
[1] 8 16 24 40 48 56 64

> Z<-sqrt(Y) #Take the square root of the vector Y and store as Z
> Z #View the vector Z
[1] 2.828427 4.000000 4.898979 6.324555
[5] 6.928203 7.483315 8.000000

Common objects and their referencing indices:

 Vectors** v[i] #i = index of element I in vector v

 Matrices** m[r,c] #r,c = index of element in row r and column c of matrix m

 Arrays** a[r,c,m] #r,c,m = index of element in row r, column c, and matrix m
 of array a

**Note: Vectors are restricted to a single data type. Matrices are 2-dimensional extensions of
vectors and arrays are 3-dimensional extensions of vectors. Consequently, both matrices and
arrays are also restricted to a single data type.

11

 Data frames* df[r,c] #r,c = index of element in row r and column c of data
 frame df

 df[[c]] #c = index of column c (returns entire column)
 df[[c]][r] #c = index of column c, while r returns the element in row

 r of column c

 Lists* L[[i]] #i = index of element i in list L
 L[[i]][g] #g = index of element g in list element i (if L[[i]] returns a

 vector)
 L[[i]][r,c] #r,c = index of element in r and column c in list element i

 (if L[[i]] is a 2D element such as a matrix or data frame)

*Note: Data frames and lists are not restricted to a single data type (though any vectors,
matrices, or arrays contained within them are). Ecologists commonly use data frames to store
their data, since each column tends to represent a different variable which varies in type (e.g.,
numeric vs factor). Lists may contain vectors, matrices, arrays, data frames, or lists, and are
therefore flexible at storing complex data sets of varying data types.

Common data types for a vector and examples of each:

 Character strings
> canids<-c("fox", "wolf", "jackal", "fox")
> canids
[1] "fox" "wolf" "jackal" "fox"

 Factor #Using the factor() function, the character vector above is converted
> canids<-factor(canids)

> canids #Now the output assigns each element to a factor level

[1] fox wolf jackal fox

Levels: fox jackal wolf

 Logical
> foxes<-canids=="fox" #A test for which elements are fox returns a logical vector
> foxes #recall the original canid levels were: fox wolf jackal fox
[1] TRUE FALSE FALSE TRUE

 Numeric
> canids<-as.numeric(canids) #Converts factors to numeric based on the level
> canids #Recall the levels for canids were: fox jackal wolf
[1] 1 3 2 1

12

Avoid creating variables that conflict with the following:

 NA #Represents missing values (Not Available)

 NULL #Used as an argument in functions to indicate no value has
#been assigned, or to initialize an empty variable

 NaN #Not a number–result from in a non-sensible computation

 Inf (-Inf) #Infinity and negative infinity

 TRUE (or T) #Logical

 FALSE (or F) #Logical

3. Operators – simple methods built into R

> c(1:12) %% 4 == 0 #Logical test for multiples of 4
[1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE

Table of common operators

Operator Description Operator Description

+ Addition & AND (element wise)

- Subtraction && AND (programming control flow)

* Multiplication | OR (element wise)

/ Division || OR (programming control flow)

< Less than ^ Raised to the power of

<= Less than or equal to ** Raised to the power of

> Greater than : Generate integer sequence

>= Greater than or equal to %o% Outer product (matrix calculations)

== Equal to %*% Matrix multiplication

!= Not Equal to ~ Model relationship between variables

! Logical negation … …

13

REFERENCING YOUR DATA

Referencing elements of a variable by location using []:
 > Z
 [1] 2.828427 4.000000 4.898979 6.324555
 [5] 6.928203 7.483315 8.000000

> Z[4] #reference an single element
[1] 6.324555

> Z[4:6] #reference a series of elements
[1] 6.324555 6.928203 7.483315

> Z[c(4,6)] #c() for referencing >1 non-sequential element
[1] 6.324555 7.483315

Referencing elements of a variable by conditions:
 > Z
 [1] 2.828427 4.000000 4.898979 6.324555
 [5] 6.928203 7.483315 8.000000

> Z[Z>4 & Z<7] #Select only those values of “z” between 4 and 7
[1] 4.898979 6.324555 6.928203

> Z[ceiling(Z)==7] # Select all those values of “z” that round UP to (==) 7

 [1] 6.324555 6.928203

Referencing elements of a 2-dimensional variable or data frame:

 Entering a small amount of data into your workspace:
> Animal.ID<-c("A1", "A2", "A3", "A4", "A5")
> total.mass<-c(3.3, 2.9, 2.8, 3.0, 3.4)
> left.ear<-c(110.2, 105.6, 97.5, 101.5, 107.3)
> hind.foot<-c(33.5, 33.9, 32.1, 32.8, 33.4)

> body.data<-data.frame(Animal.ID, total.mass, left.ear, hind.foot)
> body.data #View rabbit data, which is a data frame

 Animal.ID total.mass left.ear hind.foot
1 A1 3.3 110.2 33.5
2 A2 2.9 105.6 33.9
3 A3 2.8 97.5 32.1
4 A4 3.0 101.5 32.8
5 A5 3.4 107.3 33.4

14

 Referencing elements by location using [] #[row, column]
> body.data[1,] #Returns row 1, all columns b/c the column index is empty
 Animal.ID total.mass left.ear hind.foot
1 A1 3.3 110.2 33.5

> body.data[,1] #Returns column 1, all rows b/c the row index is empty
[1] A1 A2 A3 A4 A5
Levels: A1 A2 A3 A4 A5

> body.data[2,3] #Returns the value in the cell in row 2 and column 3
[1] 105.6

 Referencing elements by name/location #$ notation references variables or
#columns within a data frame

 > body.data[,2] #Returns the values in column 2 by indexing
[1] 3.3 2.9 2.8 3.0 3.4

> body.data$total.mass #Returns the values in column 2 by $ notation (name)
[1] 3.3 2.9 2.8 3.0 3.4

> body.data[["total.mass"]] #Note, can also reference a data frame column with [[]]

#[[]] should contain the column index or name (in " ")
[1] 3.3 2.9 2.8 3.0 3.4

> body.data[[2]][1] #Can reference single elements by referencing the column

#with [[]], then the required element with []
[1] 3.3

 Referencing elements by condition #Useful for selecting data from large
#or complicated data sets

 > body.data$total.mass[c(1,4:5)] #$ w/ specific locations
[1] 3.3 3.0 3.4

>body.data$total.mass[body.data$total.mass>=3] #$ w/ conditional notation
[1] 3.3 3.0 3.4

Note: There are many different ways you could reference the same data. The approach
you take will depend in part on your objective and experience. For example, all of the
following will return the same values, but may be selected for use for different reasons:
> body.data[,2][body.data$total.mass>=3]
> body.data[body.data$total.mass>=3,2]
> body.data[[2]][body.data$total.mass>=3]
> body.data[["total.mass"]][body.data$total.mass>=3]

15

Referencing elements of a multi-dimensional variable:

 May have objects with >2 dimensions (e.g. arrays)

 Arrays can be thought of has having an Excel file with multiple worksheets, where each
worksheet is a different matrix

 Referencing follows the same general trend except a layer index is added
o Array1[row, column, layer]

Referencing elements of a list:

 Each element of a list can store a variable (e.g., a vector, array, data frame, list, etc.)

 [[]] is used to reference list elements

 $ notation may be used if the list is named

 Referencing of elements within a selected list element would be based on their data
type (e.g., vector vs. data frame) and follow rule previously discussed.

Example: Review results from ConGenR for mountain lion data
Check that the results are actually in a list.

Note: is.list() is a function that returns a logical response. Similar functions exist to test for
alternative structures such as is.data.frame(), is.vector(), is.array(), and so on.

View the names of the list with the names() function

Note: if the list elements were not named, the function would return the value “NULL”

16

View the results stored in the 10th element of the list

Note: Element 10 is named “Rates” and could have also been accessed with the following

Furthermore, you can see that the list’s 10th element is a data frame, therefore you could
reference data within this following the rules for a data frame. For example, to reference
the entire first column, you could use

THE R WORKSPACE

Your R workspace is the internal memory on your R (the R you have downloaded onto your
computer). It is the memory space where all of your user created objects (i.e., any variables or
methods that you have created and stored) are maintained.

Your R workspace does not contain system variables or methods, nor does it contain variables
or methods derived from packages that have been installed.

Managing objects in your workspace:
ls() #list of objects in workspace
 > ls(pattern="^RSC") #Use the pattern argument and grep search to find all

#objects in the workspace that start with “RSC”
 [1] "RSC1" "RSC2" "RSC3" "RSC4" "RSC5"

rm() #removes/deletes objects
 > rm(RSC1) #Remove/delete a single object by name
 > ls(pattern="^RSC") #Search again and see that it has been removed
 [1] "RSC2" "RSC3" "RSC4" "RSC5"

 > rm(list=ls(pattern="^RSC")) #Remove/delete a group of objects by supplying

#ls() with the pattern argument, as the “list”
#argument to rm()

 > ls(pattern="^RSC") #Confirm that all the RSC objects were removed
 character(0)

17

save.image() #saves current workspace/objects

 This can also be accomplished through the R GUI icons and file menu

 Default saves workspace to .RData file

 File argument can direct workspace to be saved to a different file
 > save.image(file="RSC.RData")

load() #loads a previous workspace

 This can also be accomplished through the R GUI icons and file menu

 Default loads .RData (auto loads at launch)

 File argument can identify workspace to be loaded
 > load(file="RSC.RData")

Redirecting R output from your workspace (not covered in the course, but important):
source(file="file.name") #Reads commands from file
sink(file="file.name") #Directs output to file
sink() #Resets sink to normal defaults

 Useful for simulations with lots of code/results

getwd() #identifies working directory
setwd() #sets your working directory

Entering data into your workspace:
If you are entering only a small amount of data, manual entry is a reasonable approach, where
the first entry for each vector corresponds to the first row, the second entry corresponds to the
second row, and so on…

> Animal.ID<-c("A1", "A2", "A3", "A4", "A5")
> total.mass<-c(3.3, 2.9, 2.8, 3.0, 3.4)
> left.ear<-c(110.2, 105.6, 97.5, 101.5, 107.3)
> hind.foot<-c(33.5, 33.9, 32.1, 32.8, 33.4)

data.frame() #Assembles vectors of equal length into a data frame
> body.data<-data.frame(Animal.ID, total.mass, left.ear, hind.foot)
> body.data #View data entered
 Animal.ID total.mass left.ear hind.foot
1 A1 3.3 110.2 33.5
2 A2 2.9 105.6 33.9
3 A3 2.8 97.5 32.1
4 A4 3.0 101.5 32.8
5 A5 3.4 107.3 33.4

18

Importing data files into your workspace:

 More frequently, you will have complex data sets that you wish to read into R from
another file

 Simplest importing format is a plain text file, such as .txt or .csv files

 Plain text files are the lowest common denominator of file formats and can be viewed in
a wide range of editors (they are also less likely to be influenced or become unreadable
by updates to text editors and/or R)

 Ecologists often store their data in Excel worksheets; these can be easily saved as a text
(e.g., tab delimited) file through the save as function

 While you could import Excel files directly, converting to a plain text file requires you to
clean up the file (e.g., removing entries or summary data outside of the primary data
table)

 Note: R does not accept headers with spaces and thus will convert all spaces to a “.”

read.table() #Reads in text data files

 Returns a data frame object

 Generic in that it can handle various delimiters (tab, comma, etc.)

 Includes headers without problem

 Allows for coding of missing values (R codes as NA)

read.csv() #Reads in .csv files

 Do not need to identify a delimiter

 In some regions, commas replace decimals and could be problematic

read.xls() #Reads in .xls files directly from Excel

 Do not need to identify a delimiter

 Data outside of the primary data table will influence importing (e.g., impacting the
structure and data types of the data imported, introducing NAs)

Steps to efficiently importing your data files:
1. Identify your working directory (wd; data may or may not be in wd)
getwd() #Note that the format separating directories and folders may vary by

#system, but using getwd() will show you how R needs the separators
#identified. For example, “/” vs. “\” vs. “//” and so on
#Also, note the MacOS do not have a C: drive, so you need to adjust

> getwd()
[1] "C:/Users/rlonsinger/Documents" #indicates for my system, I should use “/”

19

2. Identify and store your data’s path and file name
> data.file<-"C:/Users/rlonsinger/Documents/RDatasets/harvest.data.txt"

 Be sure to include the file type (e.g., .txt)

 The data path needs to be passed as a character string, so it should be in quotes (" ")

 The working directory can be abbreviated with ~, thus if your file is stored within your
working directory (as it is here) we would shorten this to:
> data.file<-"~/RDatasets/harvest.data.txt"

3. Use read.table() to import data file and store as an object in your workspace
> harvest.data<-read.table(file=data.file, header=TRUE, sep="\t", na.strings=-999)

 Identify if the file has headers, the delimiter (in this case, tab delimited), and how
missing values are coded

Alternatively, if you imported the data earlier with the load.conference() function:
> harvest.data<-MW.data[[1]]

4. It is critical that you review that your data file was imported correctly

 When importing data, R coerces data to either the numeric or factor data types. R does
its best based on the structure of the data to infer the appropriate format, but often
data are interpreted incorrectly

 Typos or errors in data entry (e.g., extra decimal, letter within a number) can cause
numeric variables to be imported as factors

 Factor variables which researchers record as numeric characters may be incorrectly
imported as numeric

 Identifying numbers (e.g., hunt units, individual IDs) that should be considered as
factors, are often coerced to numeric

> harvest.data[1:5,] #Using the referencing approach already covered
> head(harvest.data) #Using the head() to view only the first 6 rows as an alternative
 Unit Species Sex Age Weight Method
1 6 1 1 juvenile 157 archery
2 55 2 1 yearling 230 muzzleloader
3 33 3 2 adult 223 rifle
4 27 1 2 juvenile 250 archery
5 26 3 1 adult 211 muzzleloader

20

5. It is important that you check the data structures as well (how the data is stored in R)

 Common methods used to evaluate data include str(), attributes(), summary(), class()

> str(harvest.data) #Method to view the data structure

'data.frame': 25 obs. of 6 variables:
 $ Unit: int 6 55 33 27 26 15 39 15 61 60 ...
 $ Species: int 1 2 3 1 3 2 2 1 1 3 ...
 $ Sex: int 1 1 2 2 1 1 2 2 2 1 ...
 $ Age: Factor w/ 3 levels "adult","juvenile",..: 2 3 1 2 1 3 2 2 2 2 ...
 $ Weight: int 157 230 223 250 211 158 203 238 169 NA ...
 $ Method: Factor w/ 3 levels "archery","muzzleloader",..: 1 2 3 1 2 2 1 2 1...

 Note that two variables (columns), Species and Sex, are saved as integers. We may want
these to be saved as categorical variables, or factors, for subsequent analyses and data
management procedures

We could modify these two variables (or others) using the R GUI’s Data editor (Edit > Data
editor…), or the fix() function. While this approach may seem easier, it is limited (e.g., can only
convert between numeric and character data types for columns) and does not document
changes that have been made to the dataset (which is generally a bad practice).

 Alternatively, we can make these changes very simply with the following commands
(take a moment to look up the different functions and understand what is occurring)

> harvest.data<-within(harvest.data, Species<-factor(Species))

#within() function indicates that you want to work within the harvest.data data set and
#therefore you do not need to specify harvest.data$Sex (you can just reference Sex)

#within the harvest.data, convert Species to a factor data type and store back to Species,
#then, store the data frame back to harvest.data

> harvest.data<-within(harvest.data, Sex<-factor(Sex, labels=c("M", "F")))

#Complete the same action for the variable Sex, but now also convert the factor level labels
#to "M" and "F", as opposed to 1 and 2 (how they were initially entered)

#to view additional arguments for these functions, check the help(within) and help(factor)
#support documentation

21

6. Re-check the data structures

 Both Species and Sex are now factors!

> str(harvest.data)
'data.frame': 25 obs. of 6 variables:
 $ Unit: int 6 55 33 27 26 15 39 15 61 60 ...
 $ Species: Factor w/ 4 levels "1","2","3","4": 1 2 3 1 3 2 2 1 1 3 ...
 $ Sex: Factor w/ 2 levels "M","F": 1 1 2 2 1 1 2 2 2 1 ...
 $ Age: Factor w/ 3 levels "adult","juvenile",..: 2 3 1 2 1 3 2 2 2 2 ...
 $ Weight: int 157 230 223 250 211 158 203 238 169 NA ...
 $ Method: Factor w/ 3 levels "archery","muzzleloader",..: 1 2 3 1 2 2 1 2 1...

> View(harvest.data) #View data in a spreadsheet format with scrolling capabilities

22

Note: The importance of checking your data structures cannot be understated. Many statistical
procedures determine what to do based on data types, or only operate with particular data
types.

Example:
lm(j~x) #lm() = linear model and models j as a function of x
 #~ indicates a modeling relationship

 If x is numeric, performs a linear regression

 If x is a factor (categorical), performs and ANOVA

tapply(j, x, method) #implicit loop that applies a method to a continuous variable (j) by levels

#of a grouping variable (x)
#If is.factor(x)==FALSE, tapply() will fail

Exporting data files from your workspace:

 Exporting a data file allows you to save a backup or work on the dataset in an alternative
format (e.g. Excel)

write.table () #Exports data as text files

 Arguments are similar to read.table()

 Default for row.names=TRUE

 Default for quote=TRUE

Steps to efficiently exporting your data files:
1. Identify and your data path and file name as before (remember to include the file extension!)
> data.file<-"C:/Users/rlonsinger/Documents/RDatasets/harvest.data.modified.txt"

2. Use write.table() to export data file
> write.table(harvest.data, file=data.file, quote=FALSE, row.names=FALSE, sep="\t")

 First identify the object to export, identify the data path and file name as .txt file, and
change necessary defaults

METADATA

Metadata includes all supporting information for a data set. Although there are ways to imbed
some metadata into files within R, R is not efficient at storing metadata.

Examples of Metadata:

Variable names (column names) Maps
Units of measurements Known data issues, deficiencies, or errors
Data collection details …

23

Tips for storing and tracking metadata in R:
1. Utilize descriptive but manageable names

 Columns, files, objects, etc.
2. Use the hashtag notation (#) to add context and annotation to files

 Can be used in scripts, but also in imported data to tell R what not to read in as data

 Can be used to reference locations of larger metadata that cannot be embedded
(e.g. maps)

3. Store your scripts as essential metadata

 These will provide a detailed record on how you read in, manipulated/modified,
analyzed, and interpreted your data

 These will allow you to verify steps, make changes, rerun analyses under different
conditions, and/or run the same or similar analyses on new data sets

PACKAGES & SCRIPTS

Packages and scripts represent grouped objects (such as variables and/or methods) that can be
downloaded as a single file

Packages:
Download and install packages from the CRAN using package tab in the R GUI

 Within the “Packages” tab, click “Set CRAN mirror…” and select the CRAN closest to you

 Return to the “Packages” tab, click “Install package(s)…” and select the package desired

24

A library is a set of packages
library() #view all installed packages

 Similar to using ls() to view your objects, with library() you can view installed packages

 Only need to install a package once (unless requiring a new version or updated)

 Must load necessary packages during each session

library(package) #load installed packages by passing the package to library()
> library(unmarked)

Scripts:
Download or copy scripts from repositories or websites

 Scripts are a collection of code that is not formally a package

 Often released prior to formal package development
Once downloaded, scripts are generally stored in the workspace as objects
ls() #view objects in the working directory

Note: you may still need to load a script after downloading or load supporting packages

 Loading scripts can often be accomplished by sourcing in the code (or simply copying
and pasting it into the R console)

Example: #Load ConGenR script
> source("~/R_Datasets/ConGenR/ConGenR.r")
> load.ConGenR()

DATA MANAGEMENT

It is often desirable, or necessary, to manipulate and manage your data within R

 Adding data to current data frames

 Deleting data from data frames

 Sorting data

 Storing results of analyses back to a data frame

 Etc.

Common data management methods:
cbind() #modify objects by adding, or binding, columns
rbind() #modify objects by adding, or binding, rows
merge() #combine two data sets by common fields
sort() #sort a vector
order() #determine the sort order of a vector
subset() #subset selects a conditional portion of a data frame

25

Example: You acquired harvest data for another year, and want to include it in the analyses
Import the new harvest data set, then view the names of the columns for each. Notice the new
data set has a new column indicating the year of harvest.

If you imported the data earlier with the load.conference() function:
> harvest.data11<-MW.data[[2]]

> names(harvest.data) #Use the names() to view the columns in the original data
[1] "Unit" "Species" "Sex" "Age" "Weight" "Method"

> names(harvest.data11) #Use the names() to view the columns in the new data
[1] "Unit" "Species" "Sex" "Age" "Weight" "Method" "Year"

 To combine the two data sets we must first add the harvest year to the original data set
and then combine the two data sets.

Use the cbind() function to add the harvest year to the original data set from 2010
cbind(df, new column) #adds column to a data frame; additional arguments can be used

> harvest.data10<-cbind(harvest.data,Year=rep(2010,length(harvest.data[,1])))
 #Add a column named “Year” to harvest.data and save it as new data frame
 #To create the new column, repeat 2010 as many times as the data frame is long

> head(harvest.data10) #view the first 6 rows and see the year was successfully added
 Unit Species Sex Age Weight Method Year
1 6 1 M juvenile 157 archery 2010
2 55 2 M yearling 230 muzzleloader 2010
3 33 3 F adult 223 rifle 2010
4 27 1 F juvenile 250 archery 2010
5 26 3 M adult 211 muzzleloader 2010
6 15 2 M yearling 158 muzzleloader 2010

View the 2011 data structure. Recall that we had modified the Sex and Species variables in
harvest.data10, so these are both factors now. We will need to do the same for harvest.data11

> head(harvest.data11)
 Unit Species Sex Age Weight Method Year
1 61 4 1 adult 190 archery 2011
2 42 4 1 yearling 179 rifle 2011
3 42 3 1 yearling 242 rifle 2011
4 21 3 1 juvenile 216 rifle 2011
5 49 4 1 adult 156 archery 2011
6 26 3 2 adult 199 muzzleloader 2011

26

> harvest.data11<-within(harvest.data11, Species<-factor(Species))
> harvest.data11<-within(harvest.data11, Sex<-factor(Sex, labels=c("M", "F")))

Use the rbind() function to combine the two data sets
rbind(df, additional rows) #adds rows to a data frame; additional arguments can be used

> harvest.data.combined<-rbind(harvest.data10, harvest.data11) #2010 first, then 2011

> harvest.data.combined[c(1:3,48:50),] #View first 3 and last 3 rows of combined data
 Unit Species Sex Age Weight Method Year
1 6 1 M juvenile 157 archery 2010
2 55 2 M yearling 230 muzzleloader 2010
3 33 3 F adult 223 rifle 2010
48 45 4 M adult 212 muzzleloader 2011
49 51 4 M yearling 250 archery 2011
50 30 4 M juvenile 201 muzzleloader 2011

Example: You are investigating mountain lion fitness and you have 100 collared animals

 These animals are captured annually to collect fitness measures

 You have 2 different data sets. The first is a dataset representing Individual IDs, their

date of initial capture in 2008, and their weight at time of capture.

 The second data frame contains the date and weight of all 100 animals during their

recapture in 2009.

 You want to combine these two data sets, but want each individual to be represented
by only a single row.

Import the data for 2008 and the data for 2009. Store as mt.lion.data08 and mt.lion.data09,
respectively. If you imported the data earlier with the load.conference() function:
> mt.lion.data08<-MW.data[[3]]; mt.lion.data08<-MW.data[[4]]

> mt.lion.data08[1:4,] #view first 4 rows of 2008 capture data
 PUCO.IDs Date.of.Capture1 Weight1
1 64F 19Nov2008 127.4343
2 56F 12Nov2008 133.9920
3 26M 16Dec2008 119.4594
4 59M 10Nov2008 111.4275

> mt.lion.data09[1:4,] #view first 4 rows of 2009 capture data
 PUCO.IDs Date.of.Capture2 Weight2
1 64F 2Dec2009 118.6665
2 5M 29Oct2009 114.5413
3 88F 22Nov2009 121.0169
4 42M 13Dec2009 115.2921

27

Combine the data sets based on a common field
merge(df1, df2) #combine by common fields, additional arguments can be used

> mt.lion.data0809<-merge(mt.lion.data08, mt.lion.data09)
 #merge the two data sets, there is only one common field so you do not need to identify

>mt.lion.data0809[1:4,] #view first 4 rows of merged data
 PUCO.IDs Date.of.Capture1 Weight1 Date.of.Capture2 Weight2
1 100F 10Nov2008 126.90221 15Dec2009 117.7457
2 10M 25Sep2008 92.83458 9Nov2009 118.3425
3 11M 18Nov2008 95.32404 5Dec2009 118.7353
4 12F 14Nov2008 114.31999 15Nov2009 119.7567

How could we reorder these columns?
How could we drop columns if there are some data that do not want to include?
> mt.lion.data0809[,-c(2,4)] # - indicates that columns 2 and 4 should be dropped
> mt.lion.data0809[,c(1,2,4,3,5)] #providing the column indices in the desired order reorders

Now: sort by the lion’s weight at time of initial capture in decreasing order
sort(vector) #Sorts a vector but does not sort a data frame

> sort(mt.lion.data0809) #if we pass sort() a data frame, we get an error
Error in `[.data.frame`(x, …) : undefined columns…

> sort(mt.lion.data0809$Weight1, decreasing=TRUE)
[1] 135.78118 133.99202 133.78551 133.52239 133.49324 133.22172 132.53796
[8] 132.05205 131.48827 130.79640 130.61864 130.42739 129.59780 129.05274
[15] 129.02911 128.38725 128.08248 127.43430 127.43111 127.07528 127.03362
……
[99] 94.29917 92.83458

 If we pass sort() a column (vector) from a data frame, it returns only that vector sorted,
not the data frame, which is what we desire

Finding the order of a vector can be used to identify the sorted location of each element
order(vector) #Determines the sort order and can be used to manipulate data frames

> order(mt.lion.data0809$Weight1)
[1] 2 31 54 3 83 75 30 99 76 89 …

 Orders elements in increasing order, thus element 2 is the smallest value

 Setting the argument decreasing=TRUE will change the direction of the order

> ord<-order(mt.lion.data0809$Weight1, decreasing=TRUE) #Save the decreasing order
>mt.lion.data0809<-mt.lion.data0809[ord,] #Apply the order as the row reference

28

> head(mt.lion.data.0809) #after sorting with order(), view the first 6 rows
 PUCO.IDs Date.of.Capture1 Weight1 Date.of.Capture2 Weight2
9 17F 27Dec2008 135.7812 10Oct2009 118.0855
52 56F 12Nov2008 133.9920 15Sep2009 116.7297
28 34M 6Nov2008 133.7855 8Sep2009 118.3936
87 88F 14Nov2008 133.5224 22Nov2009 121.0169
59 62M 17Sep2008 133.4932 27Dec2009 117.0685
77 79F 5Sep2008 133.2217 27Oct2009 114.2977

Next: we want to select only Males (indicated by M in the PUCO.IDs)
We need to first split out the Sex from the PUCO.IDs

Use the ‘stringr’ package”

 Search your library to see if you already have it

 If not, install the ‘stringr’ package

> library(stringr) #Load the stringr package

str_sub(vector, start char idx, end char idx) #Select only the portion of each vector
 #element from the indices of the start and
 #end characters in the character string
 #Note: a “-“ character index starts counting
 #from the right
> str_sub(mt.lion.data0809$PUCO.IDs, -1, -1)
[1] "F" "F" "M" "F" "M"…
> factor(str_sub(mt.lion.data0809$PUCO.IDs, -1, -1))
[1] F F M F M…
Levels: F M

We want to store sex as a factor back to the data frame as a new column
> mt.lion.data0809<-cbind(mt.lion.data0809, Sex= Insert.Code.Above.Here)
> mt.lion.data0809<-cbind(mt.lion.data0809, Sex=
 factor(str_sub(mt.lion.data0809$PUCO.IDs, -1, -1)))

Use subset() to select only males from the data set
subset(df, condition) #select a portion of a data set

> mt.lion.data0809M<-subset(mt.lion.data0809, mt.lion.data0809$Sex== "M")

29

DESCRIPTIVE STATISTICS

Common basic descriptive statistics:
median() #returns the median value from a vector
mean() #calculates the average value of a vector
min() #returns the minimum value from a vector
max() #returns the maximum value from a vector
range() #returns both the min and max from a vector
sd() #calculates the standard deviation of a vector
var() #calculates the variance (sd2) of a vector
sum() #calculates the total sum for a given vector
Note: All of these functions work as you might expect, with the first argument being a vector
for which you want the statistic

 NA values will result in a calculation of NA, unless the argument na.rm=TRUE

Example: R provides example data sets as part of the base package. The “trees” dataset
includes the girth, height and volume for Black Cherry Trees

Take a look at the data structure using head()
> head(trees)
 Girth Height Volume
1 8.3 70 10.3
2 8.6 65 10.3
3 8.8 63 10.2
4 10.5 72 16.4
5 10.7 81 18.8
6 10.8 83 19.7

For summary statistics, should first check for missing values:
> is.na(trees) #is.na() returns a logical response of TRUE or FALSE regarding if it is a NA
 Girth Height Volume
 [1,] FALSE FALSE FALSE The output is truncated here, but in general it will return
 [2,] FALSE FALSE FALSE a TRUE or FALSE for each cell in the data frame
 [3,] FALSE FALSE FALSE
 … This may be an inefficient way of determining if there are
 [31,] FALSE FALSE FALSE NA values for very large data frames

> sum(is.na(trees)) #sums up all of the cells returned by is.na() as TRUE
[1] 0 #a more efficient way of assessing the number of NA values, in this case 0

Calculate the summary statistics for tree girths:
> median(trees$Girth); mean(trees$Girth)
[1] 12.9
[1] 13.24839

30

> sd(trees$Girth); var(trees$Girth)
[1] 3.138139
[1] 9.847914

> min(trees$Girth); max(trees$Girth)
[1] 8.3
[1] 20.6

> range(trees$Girth)
[1] 8.3 20.6

Again, these only work on vectors. summary() works on both vectors and data frames, but does
not provide all of the summary statistics that may be desirable
summary() #supplies descriptive statistics for vectors or data frames

> summary(trees$Girth)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 8.30 11.05 12.90 13.25 15.25 20.60

summary(trees)
 Girth Height Volume
 Min. : 8.30 Min. :63 Min. :10.20
 1st Qu.:11.05 1st Qu.:72 1st Qu.:19.40
 Median :12.90 Median :76 Median :24.20
 Mean :13.25 Mean :76 Mean :30.17
 3rd Qu.:15.25 3rd Qu.:80 3rd Qu.:37.30
 Max. :20.60 Max. :87 Max. :77.00

Dealing with NAs:

NAs often do not respond to the same methods as other values

For example, suppose we had a vector x and wanted to remove all values that were == 0.
This could be accomplished with
> x<-x[x!=0] #Return and store the vector, excluding those elements that were 0

This will not work with NAs though. Instead, need to apply the is.na()
> x<-x[!is.na(x)] #Remove NAs–compare to x[x!=NA]

Other common NA methods include:
> x[is.na(x)]<-0 #Replace NAs with 0
> x<-na.omit(x) #drop NAs from vector x

31

IMPLICIT LOOPS

There is typically a need to apply descriptive statistics (or other methods) to multiple, specific
variables or columns in a data frame

 This can be accomplished using implicit loops:

sapply() – returns a simple data type (i.e., vector)
tapply() – returns a table data type

Lets utilize a data set with body measurements for ringtails to explore each of these functions
> data.file<-"C:/Users/RLonsinger/Documents/R_Datasets/ringtail.data.txt" #Identify file
> ringtail.data<-read.table(file=data.file, header=TRUE, sep="\t") #Import

Alternatively, if you imported the data earlier with the load.conference() function:
> ringtail.data<-MW.data[[6]]

> View(ringtail.data) #Take a look at the data format

> length(ringtail.data[,1]) #determine how many observations (rows are in the data set
[1] 184

Note: There are many other ways to get the number of rows/observations - e.g.,
str(ringtail.data), attributes(ringtail.data), length(ringtail.data$ID), or nrow(ringtail.data)

> names(ringtail.data[5:10]) #identify columns that we want to apply the statistical methods to
[1] "ROSTRUM" "LEFT.EAR" "R.HIND.FT" "HEAD" "BODY" "TAIL"

sapply() applies a method to any number of columns and returns the results as a vector
sapply(data frame, method,…) #… can pass arguments to the method being applied

> sapply(ringtail.data[,5:10], mean, na.rm=TRUE)
 ROSTRUM LEFT.EAR R.HIND.FT HEAD BODY TAIL
 3.100000 4.720139 6.519310 9.474766 31.412281 36.008904

You could pass user defined functions to sapply() as well, if you wanted to perform the same
procedure over multiple columns in a data frame!

tapply() allows you to condition the descriptive statistics of one variable with another factor
variable (i.e., one that is nominal or categorical) and returns a table
tapply(df$continuous.variable, df$grouping.variable, method, …)

…can pass additional arguments to the method
> tapply(ringtail.data$WEIGHT, ringtail.data$SEX, mean, na.rm=TRUE)
 F M
 967.6471 1209.3776

32

PARENTHESES & BRACKETS

Parentheses:

 Parentheses contain an expression to evaluate and influence the order of operations
> 3 * 3 + 6 #Performs the multiplication first, then the addition

 [1] 15

> 3 * (3 + 6) #Parentheses alter the order of operations, performing
[1] 27 #operations inside the function first

#Interprets () as the function ()

Square brackets:

 Generally follows an object’s symbol and contains indices for data within an object

[] Generally follows an object symbol – e.g., x[1]
Contains indices for data within an object

[[]] Contains indices for data within an object
 More commonly used with lists, but may be used elsewhere

Note: Square brackets are commonly multi-dimensional and/or stacked
E.g., ListA[[1]][1,1] #Return the element in row 1 and column 1 of element 1 in ListA

 #Suggest that element 1 of ListA must be a 2D object

ListA[[1]][,1][1] #Selects the same data as above
 #Selects the first element in column 1 of element 1 in ListA

df[[1]] #Returns the first column of data frame df as a vector

Brackets can be used to simple subsetting, sorting, and data management

> subset(mt.lion.data0809, mt.lion.data0809$Sex=="M") #Subset and return only the males
> mt.lion.data0809[mt.lion.data0809$Sex=="M",] #Select males via a conditional index

> mt.lion.data0809[mt.lion.data0809$Sex=="M" & mt.lion.data0809$Weight2>125,]
 #Select only males >125 lbs in year 2 (2009)

Curly brackets:

 Evaluates a series of separate expressions and returns only the last expression

 Often used to group expressions for functions and looping structures

 { } Contents evaluated in the current working environment
 f{ } Contents evaluated in a new environment

33

CONDITIONAL STATEMENTS

Two functions are commonly used for conditional statements:
if() #evaluates a logical condition for a single value (not a vector)
ifelse() #evaluates logical conditions for a vector

General structure for if():

if(condition) true_expression else false_expression

If multiple expressions are carried out under one or both conditions, structure is often:
if(condition){
 true_expressions
 } else false_expression

Or:
if(condition){
 true_expressions
 } else {
 false_expressions
 }

> if(trees$Height[1]>trees$Girth[1]) "Correct"
[1] "Correct"

> if(trees$Height[1]>trees$Girth[1]) "Correct" else "Potential Issues"
[1] "Correct"

General structure for ifelse():

ifelse(condition, true_expression, false_expression)

> a <- c(6:-4)
> sqrt(a) #Generates warning
[1] 2.45 2.24 2.00 1.73 1.41 1.00 0.00 NaN NaN NaN NaN

> ifelse(a >=0, a, NA) #Change neg values to NA
[1] 6 5 4 3 2 1 0 NA NA NA NA

> sqrt(ifelse(a >= 0, a, NA)) #Avoids error, passes NA instead of NaN to sqrt()
[1] 2.45 2.24 2.00 1.73 1.41 1.00 0.00 NA NA NA NA

34

LOOPING LANGUAGE

Extremely valuable for processing large datasets, repeating processes, and simulations

Primary looping constructs:
repeat{expression} #Repeat an expression – repeat followed by { } rather than ()

> i <- 10 #Initialize a vector i with the value
> repeat{ #print(i) = print i on each loop
 if(i > 100) break else {print(i); i <- i + 10} #Without conditions infinite loop
 } #the keyword “break” stops looping

while(condition) expression #Repeat an expression while a condition is TRUE

> i <- 10
> while(i <=100) { #if conditions are never met, will be an infinite loop
 print(i); i <- i + 10} #Can use the keyword “break” to stop looping
 }

for(var in list) expression #Iterate through elements of a vector or list and evaluate an

#expression on each element
> b <- seq(10, 100, 10) #Vector of 10-100, by 10, with the sequence
> for(i in b) print(i) #Print i, which indicates element i

> for(i in seq(10,100,10)) print(i) #Or could imbed seq() into the for()

Note: The function may not operate as desired if the vector/list is not numeric and/or
the expression involves complex methods. On the fly conversion to numeric (e.g., with
as.numeric()) may influence the desired order of operations (i.e., the order of the
elements over which are looped).

Consequently, it may be better practice to loop over elements in a vector/list
sequentially by employing a combination of “:” and the length() function.

> b <- seq(10, 100, 10) #Vector of 10-100, by 10, with the sequence
> for(i in 1:length(b)) print(b[i]) #Print element i of vector b on each loop

Commonly used functions to help control loops/output:
if() #Conditional test for single value
ifelse() #Conditional test of a vector
length() #Return the length of a vector
sum() #Return the total cumulative sum of arguments
c() #Concatenate or string together values
append() #Appends values to a vector at a specified location

35

Looping Example with mountain lion dataset (Dataset = mt.lion.data0809):
Steps to consider:

1. Calculate the change in body weight for each animal from 2008 and 2009
2. Store this new metric as a column in the data frame
3. Select only those animals that have lost weight

In Excel, we might accomplish this by selecting an empty column, calculating Weight2 –
Weight1 and copying the formula down through the data set, then labeling the column in some
way. To select those that have lost weight we may then sort by change in weight.

Translate this process into an R loop:

 Calculate the change in body weight for each animal from 2008 and 2009
> Delta.weight <- NULL #Create and empty vector to store new data

To calculate a weight change for the first row of the dataset in R, simply:
> mt.lion.data0809$Weight2[i]-mt.lion.data0809$Weight1[i] #if i = 1

Store value to the end of the new data vector
> Delta.weight<-append(Delta.weight, __insert calculation above for row i____)

Pull this all together and use a for loop to do this for each row
> Delta.weight <- NULL #Create and empty vector to store new data
> for(i in length(mt.lion.data0809$PUCO.IDs)){
 Delta.weight<-append(Delta.weight,

 mt.lion.data0809$Weight2[i]-mt.lion.data0809$Weight1[i])
 }

 Store this new metric as a column in the data frame
> mt.lion.data0809<-cbind(mt.lion.data0809, Delta.weight)

 Select only those animals that have lost weight
> mt.lion.data0809[mt.lion.data0809$Delta.weight<0,] #Or use subset()

36

USER DEFINED FUNCTIONS

We often develop code that we want to reuse and/or incorporate into more complicated
scripts, simulations, and/or packages

 User defined functions provide a way to encapsulate a set of expressions and quickly recall
and use them

 Operations an variables operated on within a function are done so in a separate
environment

function (arguments) body #Create a function that takes arguments and executes the

#expressions in the body

 arguments are symbol names which may or may not have default values

 body is a collection of expressions to be executed when the function is called

 { } can be used as a wrapper for long body expressions

 By default, user defined functions return the result of the last evaluated expression

Example: methods for determining the mean and standard deviation are incorporated in the
base R download (i.e., mean() and sd(), respectively). Suppose you regularly need to calculate
the standard error with the following general formula

 Standard Error = Standard Deviation/ Square root of N

where N is the number of observations in the data set

This could be calculated in R for a vector “x” with:

> sd(x)/sqrt(length(x))

If the data contains NAs, then the calculation returns NA unless you set na.rm=TRUE:
 > sd(x, na.rm=TRUE)/sqrt(length(x))

Still, if NAs do exist, the above will calculate the standard deviation based on the number of
non-NA values, while the square root of N (i.e. , sqrt(length(x))) will be calculated based on the
total number of elements in the vector (including NAs). The following can correct this:
 > sd(x, na.rm=TRUE)/sqrt(length(x) - sum(is.na(x)))

This can be stored as a user defined function with function():
 > SE <- function(x){
 sd(x, na.rm=TRUE)/sqrt(length(x) - sum(is.na(x)))
 }

And used to quickly assess the standard error of a continuous variable:
 > SE(x=ringtail.data$WEIGHT)
 [1] 16.50207

37

To return more than just the last expression evaluated, employ the return() function
return(arguments) #contained within a function, tells the function what to return

Re-write SE function to return not only the standard error, but also the mean and a count of
any missing values removed during the calculation:
 > SE.list <- function (x){
 SE<-sd(x, na.rm=TRUE)/sqrt(length(x)-sum(is.na(x))) #Same as before
 return(list(Mean = mean(x,na.rm=TRUE), #Now return a named
 SE = SE, #list with mean, SE,
 NA.removed = sum(is.na(x)))) #and number of NAs
 } #removed

SIMULATIONS

Scripts that repeat some modeling process many times over

 Usually thousands of times, under variable conditions, and/or until some conditions is met

 Generally incorporates some form of stochasticity

 Records the outcome of each replicate

 Often interested in summary statistics and/or distribution of the outcomes

 May consider different conditions to draw inferences on the influence of different
parameter values

The conditions varied will depend on the research question(s)

 Sample size

 Statistic used

 Parameter estimates (e.g., those with uncertainty)

 Variance, error, etc.

 Distributions

Simulations rely heavily on looping constructs, with loops being nested for different parameters

 Each loop tends to iterate over different conditions for a different parameter

Example: Use population estimates over 39 years for a brown bear population to conduct a
count-based population viability analysis (PVA). A simple (perhaps the simplest) count-based
PVA calculates a mean population growth rate (and associated standard deviation) from the
data provided, then uses this summary data to project the population forward some period of
time while incorporating stochasticity. It repeats this process many times, then summarizes the
results by determining the proportion of projections that were below some threshold.

Steps to consider:

1. Import the PopEstimates.txt data set
2. Calculate population growth rate (lambda) for each time step (year)

 Where lambda for a given time step is Nt+1/Nt (this will require a loop)

38

3. Calculate the mean and SD of lambdas

 mean(vector)

 sd(vector)
4. Simulate population viability for 100 years

 Determine a starting value for each simulation (Nhat=last value of PopEstimates)

 Assume Lambda~Normal(mean, SD)

 Randomly select lambda for each year via rnorm()
5. Conduct 100 iterations
6. Summarize the result as Pr(Extinction)

Next: Consider how you might modify/add to this in order to evaluate sensitivity to variation
(standard deviation) in lambda

 What additional loops would be required?

 What levels of SD should you consider?

 How can you store and summarize the output

Next: Convert this simulation code into a user defined function

 Which variables should be included as arguments?

 Which of these arguments are required entries and which should have default values?

 What control flow (e.g., conditional statements) would help make the function more
user friendly?

 How should the output be returned to the user?

Finally: Use this new user defined function within a short script/loop to evaluate the influence
of both variation in SD and also initial population size. View the final results as a data frame.

Note: One possible solution is provided in the supporting MW.Workshop.r file

39

GRAPHICS

Objectives: (1) provide examples of some of R’s graphing capabilities and (2) review some of the
commonly used arguments

R has the ability to produce visually appealing graphics

 Very easy to plot basic graphics for exploratory purposes

 Publication quality graphics can require quite a bit more use of settings (arguments)

 Recommend creating/retaining code for quality graphics

 Recommended packages: graphics and lattice

Common plotting methods (review the usage via the help() for details on arguments):
plot() #Scatterplots stripchart() #Strip Charts
hist() #Histograms boxplot() #Box Plots
pie() #Pie Charts barplot() #Bar Plots

Common methods for modifying graphics:
par() #set graphical parameters
lines() #add points joined with line segments to a plot
points() #add a sequence of points to a plot
abline() #add straight lines to a plot
axis() #adds an axis to a plot
mtext() #adds text to one of the four margins
text() #adds text at specified location in a plot
legend() #adds a legend to the plot

Common arguments to graphing and plotting methods:

40

41

> plot(trees$Girth, trees$Volume, col="red", main= "Main Title", xlab="Girth", pch=2)

Examples of plots created in R include the following manipulations or changes:

 Add multiple data series to the same plot with two y axes

 Add standard error bars, a asymptote line, and a legend

42

Plot multiple graphics together, add fitted lines, and modify x and y labels

> hist(mc.rate.ra.lda.s2, freq=FALSE, ylab="DENSITY", xlab= "APER", xlim=c(0,100),

ylim=c(0,0.15))

 Normal distribution added with lines(), vertical line and labels added with lines() and text()

43

> pie(harvest.data.plot, main="Method of Take",labels=levels(harvest.data.combined$Method),
cex=1.5,clockwise=TRUE, col=rainbow(length(harvest.data.plot)))

> barplot(harvest.data.plot, main="Method of Take", names.arg=
levels(harvest.data.combined$Method), cex.main=2, cex.names=1.5, col=rainbow(length
(harvest.data.plot)))

> par(mfrow=c(2,1)) #change parameters to plot two plots in a format of 2 rows and 1 column
> stripchart(ld$LD1~ ld$PopAssigment, xlab="LD1", ylab="Clusters")

 Means were added as red “X”s using points()

 Second plot code is excluded, but would be comparable

44

> boxplot(WEIGHT~SEX, data=ringtail.data) # “~” indicates a modeling relationship

with numeric ~ grouping

> boxplot(WEIGHT~SEX, data=ringtail.data, notch=TRUE)

> stripchart(WEIGHT~SEX, data=ringtail.data, method="jitter", col="red")
> boxplot(WEIGHT~SEX, data=ringtail.data, horizontal= TRUE, add=TRUE, boxwex=.5,
outline=FALSE) #add=TRUE plots the second plot over the first

