
1

CONGENR: USER MANUAL

ROBERT C. LONSINGER
1,2

 AND LISETTE P. WAITS
1

1
UNIVERSITY OF IDAHO, DEPARTMENT OF FISH AND WILDLIFE SCIENCES

875 PERIMETER DRIVE, MS 1136, MOSCOW, ID 83844
2
LONS1663@VANDALS.UIDAHO.EDU

November 4, 2015

Recommended citation: Lonsinger RC, Waits LP (2016) ConGenR: rapid determination of

consensus genotypes and estimates of genotyping errors from replicated genetic samples.

Conservation Genetics Resources.

Maintainer: Robert Lonsinger (Lons1663@vandals.uidaho.edu)

Available at: www.uidaho.edu/cnr/research-outreach/facilities/leecg/publications-and-software

Dependencies: stringr; CONGENR will install and load the R stringr package if it is not already

present in your R working directory.

Description: CONGENR is a conservation genetics R (R Core Team 2015) script that facilitates

the rapid determination of consensus genotypes from replicated genetic samples, determines

overall and individual sample level polymerase change reaction (PCR) success rates, and

calculates observed genotyping error rates (i.e., allelic dropout [ADO] and false allele [FA]

rates). CONGENR allows users to efficiently calculate and compare PCR success rates and

genotyping errors by sample classes, which can constitute any identifiable subdivision of

samples (e.g., based on sample age or condition, region, season, sex, age class). CONGENR

provides estimates of PCR success rates and genotyping error rates by locus, which can expedite

the identification of problematic loci (e.g., loci experiencing low PCR success rates and/or high

genotyping error rates). Additionally, CONGENR supplies a summary of the number loci that

have achieved a consensus genotype for each sample, facilitating the identification of samples

requiring additional replicates. CONGENR is intended for use with codominant, multilocus

microsatellite data generated primarily through noninvasive genetic samples and processed with

a multi-tubes approach (Taberlet et al. 1996). The wrapper function, ConGen(), is designed to

handle input in a format that can be easily exported from the program GENEMAPPER and calls all

the necessary supporting functions to perform the analysis. Researchers interested in calculating

genotyping error rates by comparing low quality samples (e.g., noninvasively collected samples)

to high quality reference samples (e.g., multilocus genotypes resulting from blood or tissue

samples; in place of consensus genotypes) can do so by directly calling the genotyping error

function, gt.error(); this may be particularly useful when conducting pilot studies to

evaluate genotyping error rates using noninvasive samples collected from known individuals

from which high quality samples have been obtained. Additionally, CONGENR offers a function

to compare multilocus consensus genotypes across samples and identify samples that match at all

or a specified number of loci. This function, congen.matching(), must be called separately

and takes the consensus genotype files produced by ConGen() as the input.

mailto:Lons1663@vandals.uidaho.edu
mailto:Lons1663@vandals.uidaho.edu
http://www.uidaho.edu/cnr/research-outreach/facilities/leecg/publications-and-software

2

Consensus Genotypes.—CONGENR employs common protocols for determining consensus

genotypes from replicated (muli-tubes approach) DNA samples (e.g., Frantz et al. 2003, Flagstad

et al. 2004, Zhan et al. 2010). Specifically, CONGENR requires that each allele of a heterozygous

genotype be observed ≥2 times, while single alleles must be observed ≥3 times to confirm a

homozygous genotype. Consensus genotypes may include homozygotes with uncertainty, which

are characterized by the confirmation of one allele observed 2 – 4 times, while a second allele is

observed only once, generating uncertainty as to whether or not this single observation is the

result of a single FA, or repeated ADO across the other replicates. Upon completion of additional

replicates, if the single occurrence allele is observed a second time, it is then confirmed and the

genotype is determined to be heterozygous. Alternatively, if additional replicates beyond the 5
th

replicate fail to detect the single occurrence allele a second time, the genotype is determined to

be homozygous. CONGENR only accepts numeric values for scored alleles and is not set to

handle letter or characters (e.g. ?, X, and Y).

Consensus Genotype Examples.—The following examples demonstrate the process taken by

CONGENR to confirm (or establish) consensus genotypes.

Example 1:

 Replicate 1 – 144/148 Two alleles present/observed

 Replicate 2 – 144/148 Two alleles present/observed

Consensus – 144/148 Only 2 alleles seen, each seen ≥2x

 Consensus genotype = Heterozygous

Example 2:

 Replicate 1 – 144/144 One allele present/observed

 Replicate 2 – 144/144 One allele present/observed

 Replicate 3 – 144/144 A third replicate is required to confirm

Consensus – 144/144 Only 1 allele seen ≥3x

 Consensus genotype = Homozygous

Example 3:

 Replicate 1 – 144/148 Two alleles present/observed

 Replicate 2 – 144/144 One allele previously observed

 Replicate 3 – 144/148 Presence of both alleles in third replicate

Consensus – 144/148 Two alleles seen ≥2x across replicates

 Consensus genotype = Heterozygous

Example 4:

 Replicate 1 – 144/148 Two alleles present/observed

 Replicate 2 – 144/144 One allele previously observed

Consensus – 144/0 One allele seen 2–4x, second allele seen only once

 Consensus genotype = Homozygous with uncertainty (0)

3

Example 5:

 Replicate 1 – 144/144 One allele present/observed

 Replicate 2 – 144/144 One allele present/observed

 Replicate 3 – 148/148 One (different) allele present/observed

 Replicate 4 – 148/148 One (different) allele present/observed

Consensus – 144/148 Only 2 alleles seen, each seen ≥2x

 Consensus genotype = Heterozygous

Example 6:

 Replicate 1 – 144/144 One allele present/observed

 Replicate 2 – 144/144 One allele present/observed

 Replicate 3 – 144/148 Two alleles present/observed

 Replicate 4 – 144/144 One allele present/observed

Consensus – 144/0 One allele seen 2–4 x, second allele seen only once

 Consensus genotype = Homozygous with uncertainty (0)

Example 7:

 Replicate 1 – 144/144 One allele present/observed

 Replicate 2 – 144/144 One allele present/observed

 Replicate 3 – 144/148 Two alleles present/observed

 Replicate 4 – 144/144 One allele present/observed

Replicate 5 – 144/144 One allele present/observed

Consensus – 144/144 One allele seen ≥5x, second allele seen only once

 Consensus genotype = Homozygous

PCR Success Rates.—CONGENR calculates PCR success rates based on two approaches.

1. PCR Success – an overall assessment of PCR success, which calculates the number of

successful amplification / the total number of amplifications attempted.

2. Individual Sample Level PCR Success – an individual sample level success rate, which

calculates the proportion of samples that had successful amplifications at n loci. When

the argument PID = NULL, n = 50% of the loci. Otherwise, PID may be set to any value

between 1 and the total number of loci and n = PID. In practice, PID will most

appropriately be set to the probability of identity (Waits et al. 2001) required for

successful identification of individuals.

Additionally, PCR success rates are calculated by locus and sample class (if a class file is

provided). Locus specific PCR success rates are calculated based on an overall assessment of

PCR success for each locus. Mathematically, this is the same as (1) above and calculates the

number of successful amplification / the total number of amplifications attempted for each locus.

Note, that locus specific PCR success rates are not calculated at the individual sample level. If a

class file is provided, both the overall PCR success rate (1, above) and individual sample PCR

success rate (2, above) are calculated for each sample class independently and overall. For

example, if a class file identifies samples as being from Region A or Region B, the results will

include separate overall PCR success and individual sample level PCR success rates for Region

4

A and Region B, as well as overall and individual sample level PCR success rates for the regions

combined (i.e., both Region A and Region B).

Genotyping Error Rates.—Genotyping error is defined as the difference between the observed

genotype (e.g., from a single replicate of a sample) and the true genotype, where we assume that

the consensus genotype, or a reference genotype, reflects the true genotype. Quantifying

genotyping errors is accomplished for each sample and locus by comparing each replicated

genotype to the consensus genotype or reference genotype (Lampa et al. 2013). To quantify

genotyping errors, we follow procedures detailed by Broquet and Petit (2004). Specifically, a FA

is recorded when an allele not present in the consensus (or reference) genotype is observed in a

single replicate. ADO is recorded when an allele present in the consensus (or reference)

genotype is not observed in a single replicate. Methods employed by CONGENR differ slightly

from that presented by Broquet and Petit (2004); specifically, Broquet and Petit (2004) suggest

that ADO can only be documented for heterozygous loci, as ADO of a homozygous locus would

result in a failure. Thus, the presence of a single allele that does not match a confirmed

homozygous consensus (or reference) genotype would be scored as a FA, but not as ADO.

CONGENR differs from this convention, by scoring this situation as both a FA and ADO. We

have adopted this convention for two reasons. First, the presence of the FA indicates a successful

PCR amplification, and failure of the confirmed allele (from the consensus or reference

genotype) to amplify is by definition ADO. Second, the resulting output may be used as a

diagnostic to identify samples for which the sizing standard in GENEMAPPER may be incorrectly

labeled. In particular, the presence of both a FA and ADO within the same sample may reflect a

shift (e.g. 2 base pair shift; in both homozygous and heterozygous genotypes), which may be an

artifact resulting from an incorrectly labeled size standard. Recognition of this pattern can help

researchers target samples for which the sizing standard should be re-evaluated. Additionally, if

desired, researchers can easily identify sample replicates containing both a FA and ADO and

make adjustments.

Similar to calculations of PCR success, genotyping error rates are calculated and reported by

locus and sample class (if a class file is provided). Locus specific genotyping error rates are

calculated as before, but for each locus independently. If a class file is provided, genotyping

error rates are calculated for each sample class independently and overall. For example, if a class

file identifies samples as being from Region A or Region B, the results will report separate

genotyping errors (FA and ADO) for Region A and Region B, as well as overall combined

genotyping error rates (one each for FA and ADO).

Results Notation.—When running the CONGENR in its entirety (i.e., from the ConGen()

wrapper function), it is best practice to save the resulting R results list as an R object (as opposed

to simply printing the results to the screen). An example of this is available below in the example

for the ConGen() wrapper function. The names(object.name) function can then be used

to view the names of the items contained within the resulting list object and either the $ or [[]]

notation can be used to view the desired results. For example, to view the ‘Rates’ results, either

object.name$Rates or object.name[[10]] will then return the desired results.

Detailed descriptions of result files are provided below with each corresponding function, but in

general, files ending in ‘long’ refer to genetic data formatted where each row represents one

replicate-locus (for replicate data) or sample-locus (for consensus data) and combination. Files

5

ending in ‘flat’ refer to genetic data formatted where each row represents one replicate (for

replicate data) or one sample (for consensus data) and each locus is represented by four columns

(allowing for situation where >2 alleles are scored). For consensus genotype files, 0 denotes

uncertainty, while NA represents a missing value (no successful amplification). For replicate

genotype files, missing values are coded as either 0 or NA; files which code missing values as

NA have names ending with ‘na’ (e.g., genotypes.complete.longna). The genotyping error results

are returned in the ‘long’ format and for each sample-locus combination, contain a row for the

consensus genotype (denoted by a ‘.con’ added to the sample name) and one row for each

replicate. Within the genotyping error results, FAs and ADOs are scored only for replicates

(ADO and FA cannot be documented for consensus genotypes) and are coded as a binary

response (1 = present, 0 = absent; no value indicates that genotyping errors could not be assessed

based on number of replicates). Similarly, amplifications attempted (AA) and successful

amplifications (SA) are tracked for each replicate and summarized for each consensus genotype

as the total number of amplifications attempted (N.AA) and the number of successful

amplifications (N.SA).

Matching.—Following the determination of consensus genotypes, it is often desirable to identify

samples with identical (full match) or similar (partial match) multilocus genotypes. The

congen.matching() function can be used to identify samples with fully or partially

matching multilocus genotypes. Users can define the number of matching loci required to report

two samples as being a match; in practice, the number of matches required will often be set to

the number of loci required to meet desired levels of probability of identity (Waits et al. 2001).

An option to consider or ignore loci with uncertainty (coded as an allele size = 0) provides a

flexible framework for identifying matches even when uncertainty exists. When uncertainty is

ignored, two samples are considered a match if the number of loci that are full matches and the

number of loci with uncertainty sum to a value greater than the number of matches required. We

caution that if datasets contain samples with substantial amounts of uncertainty (i.e., lower

quality samples), results from matching procedures that ignore uncertainty can be extremely

long, as samples with high levels of uncertainty will appear as a match to many (or all) of the

other samples. Consequently, we recommend considering uncertainty when conducting initial

matching analyses (note: the number of matches required can be decreased to increase matching

tolerance). After close matches are determined, analyzing the consolidated dataset while ignoring

uncertainty can produce more manageable results. When comparing samples, information on the

spatial location at which each sample was collected can be beneficial. Matching methods

employed by CONGENR allow the user to provide sample location data, which can be numeric

(i.e., XY data, such as UTMs) or categorical (e.g., region, county, study area). Sample locations

are provided in a separate file or data frame. When numeric locations are provided, the results

will include a distance between each focal sample (the sample to which other samples are being

compared) and each sample determined to be a match. Alternatively, if locations are categorical,

the location of each sample will be added to the result file, facilitating comparisons between the

focal sample and matching samples. By default, CONGENR attempts to minimize repetition in

results generated. Consequently, if a sample is determined to be a perfect match to the focal

sample, it is later skipped and not considered as a focal sample (i.e., if it is a perfect match to a

sample already considered as the focal sample, it will produce the same results and therefore

does not need to be analyzed further). Additionally, an identical set of samples that are not

perfect matches are only reported once in the result file. For example, suppose both Sample B

6

and Sample C match the focal sample, Sample A, at all but 1 locus and no other samples are

determined to be matches (based on the criteria set). When Sample B is considered as the focal

sample, if only Sample A and Sample C are determined to be matches (based on the criteria set),

then the results are omitted from the output, as they essentially report the same results as when

considering Sample A as the focal sample (which would have already been included in the

results file.

Matching Results Notation.—Matching with CONGENR will return a list and it is therefore best

practice to save the resulting R results list as an R object. An example of this is available below

in the example for the congen.matching() function. The names(object.name)

function can then be used to view the names of the items contained within the resulting list

object and either the $ or [[]] notation can be used to view the desired results. Detailed

descriptions of results contained within the list are provided below. As with the consensus

genotype files, 0 denotes uncertainty, while NA represents a missing value (no successful

amplification). For replicate genotype files, missing values are coded as either 0 or NA.

Matching results include a column for ‘mismatches’. Focal samples (the sample to which

subsequent samples are compared to) are denoted with a ‘mismatches’ value of 9999. Each

subsequent ‘mismatches’ value represents the number of loci that do not match between the

sample under consideration and the focal sample (when viewing results in the list format; via

results.object$matching.list). Alternatively, when viewing results in the data frame

format (via results.object$matching.data) each ‘mismatches’ value represents the

number of loci that do not match between the sample under consideration and the preceding

focal sample (denoted with ‘mismatches’ value 9999). All samples with zero matches (based on

the criteria set) are located at the end of the results files; these samples are located in the last list

element in the list formatted data, and the final rows in the data frame formatted results. When

location data are provided, the ‘Location’ column is added to the results list and data frame. For

categorical locations the location is reported for each sample (NA indicates that no location was

available). For numeric locations, the Euclidean distance between the sample under

consideration and the focal sample is reported (NA values indicate that the location was

unavailable for either the location under consideration or the focal sample.

Troubleshooting.—The most common problems encountered relate to formatting of the input

data. Additional columns of data, which are not required by CONGENR, may be included in input

file, but will be ignored. The most common problem is the inclusion on non-numeric allele calls.

For example, some researchers may record and X and Y for sex identification markers, as

opposed to the numeric representation of their base pair lengths. As a quick diagnostic, once

loaded into R, the input file data structure can be viewed using the str() function and each of

the columns related to alleles should be numeric. Another problem which may be encountered

results from data not having the same number of columns for every row. This typically results

from files that were formatted using a text editor (e.g., Notepad) and where the trailing spaces

were removed or deleted. This problem can be easily resolved by opening the file with software

designed to handle spreadsheets, such as Microsoft Excel, ensuring columns are correctly

aligned, and re-saving the file as tab delimited text file.

7

Topics and Functions Documented:

Loading the CONGENR script into your R workspace ... 8

Example data files .. 9

Required and supporting input files ... 10

Running CONGENR .. 12

load.ConGenR ... 12

ConGen ... 13

gt.error .. 17

pcr.success ... 20

sample.pcr.success .. 22

rm.samples.. 24

add.class .. 25

det.congen.. 26

det.genotype ... 27

samp.details ... 28

sort.alleles.long ... 29

sort.alleles.flat ... 30

long.to.flat.format .. 31

flat.to.long ... 32

congen.matching.. 34

add.loc ... 39

Literature Cited .. 40

8

Loading the CONGENR script into your R workspace

CONGENR is an R script and requires the user to first install the R programing language

(available at www.r-project.org). The CONGENR script can be downloaded from

http://www.uidaho.edu/cnr/research-outreach/facilities/leecg/publications-and-software and

subsequently loaded into your R workspace through one of two processes.

Option 1: You can load the CONGENR script to your R console workspace by saving the

downloaded CONGENR folder to your computer, extracting the compressed files, and then using

the source() function to load the ConGen.r script file. source() simply requires the user to

provide the appropriate directory path to the script file as a character string. After running the

source() command with the appropriate file path, running load.ConGenR()is required to

load necessary supporting packages.

For example, if the CONGENR folder was saved to user1’s desktop, the directory path and

subsequent loading function may resemble the following:

> source("/Users/user1/Desktop/ConGenR/ConGen.r")

> load.ConGenR()

Similarly, if the CONGENR folder was saved to user1’s active working directory (the working

directory active in the current session of the R console), ‘~’ can be used to denote the working

directory in the following manner:

> source("~/ConGenR/ConGen.r")

> load.ConGenR()

Note: you can determine the location of your working directory with the following function:
> getwd()

Option 2: You can open the ConGen.r script file, copy and paste the entire script into the R

console, and then run the following code in the R console:

> load.ConGenR()

http://www.r-project.org/
http://www.uidaho.edu/cnr/research-outreach/facilities/leecg/publications-and-software

9

Example data files

Description

ConGen includes four example files that can be used to run examples included throughout

this document. Example files listed below will need to be loaded to the users working

directory manually to execute ConGen examples.

Files

ConGenR_example_data_long A .txt file containing ‘long’ format

 replicate data as exported from the

 program GENEMAPPER’s genotypes

 table. This file conforms to the

 required input to run ConGen.

ConGenR_example_data_class A .txt file containing the class

 information for each sample. The file

 contains 2 columns (Sample ID and

 class [called ‘Freshness’] in this file).

ConGenR_example_data_flat_replicates A .txt file containing ‘flat’ format

 replicate data, where each row

 represents one replicate and each

 locus has four columns (allowing for

 situation where >2 alleles are

 scored). Note: missing values for

 alleles (i.e., no allele scored) are

 denoted with a 0.

ConGenR_example_data_flat_reference A .txt file containing ‘flat’ format

 reference data, where each row

 represents one sample and each

 locus has four columns (allowing for

 situation where >2 alleles are

 scored). Note: missing values for

 alleles (i.e., no allele scored) are

 denoted with NA; 0 indicates

 uncertainty. Additionally, by

 convention, Class is set to 0 for all

 reference or consensus genotypes.

10

ConGenR_example_location_cat A .txt file containing categorical

 location data. Each row represents

 one sample and the file contains two

 columns. Column 1 contains the

 sample IDs and column 2 contains

 the location of the sample. Missing

 values, if included, would have been

 coded as NA.

ConGenR_example_location_num A .txt file containing numeric

 (coordinate) location data. Each row

 represents one sample and the file

 contains three columns. Column 1

 contains the sample IDs, while

 columns 2 and 3 contain the X and Y

 coordinate locations of the sample,

 respectively. Missing values are

 coded as NA.

Required and supporting input files

Required files

Running CONGENR to determine consensus genotypes requires, at minimum, a file that

contains one row per sample replicate–locus combination (i.e., a long format file) and the

following columns: ‘Sample File’, ‘Sample Name’, ‘Marker’, ‘Allele 1’, ‘Allele 2’, ‘Allele

3’, and ‘Allele 4’. Additional columns may be included in the input file, but will not be used.

This file format can easily be exported from the program GENEMAPER by exporting the

“genotypes table” with appropriate settings. An example of the data format,

‘ConGenR_example_data_long’, is provided in the CONGENR source folder.

Sample file and sample names cannot include a dash (i.e., “-“). If results in include dashes in

the sample file or sample names, these should be replaced before running data. This can be

easily accomplished in a text editing program (e.g., Notepad, Excel) using the replace

function.

Note: If a long format file is unavailable, a flat format file (i.e., a file containing one row per

replicate with columns for each locus and allele) can be converted to the required long format

using the flat.to.long() function with the argument reference = FALSE,

indicating that each row in the file contains replicate, as opposed to reference or consensus,

genotypes. An example file, ‘ConGenR_example_data_flat_replicates’, which can be

converted to the long format is provided in the CONGENR source folder.

11

Supporting files

CONGENR can take a ‘Class’ file, which assigns each sample to a specific ‘class’ and allows

for the calculation and comparison of PCR success rates and genotyping error rates by

sample classes. Sample class will typically constitute identifiable subdivisions that the

research feels may influence PCR success and genotyping error rates. For example, classes

may represent sample age, sample condition, sampling region, sampling season, sex (e.g.

male vs. female), or age classes (e.g., juvenile vs adult). Any number of classes may be

included.

When a classification file is included, the file should contain only 2 columns representing the

Sample ID (column 1) and Class (column 2) of each sample. The Sample IDs contained in

column 1 are case sensitive and should match the Sample IDs contained in the required long

format data file. Although classes are categorical in nature, these classes should be

represented in the input file as positive integers, excluding 999 (which is used to denote

samples with unknown classification). Zeros should also not be used, as zeros are used

internally to represent consensus or reference genotypes. If classes are known for some

sample and not others (e.g., male, female, or unknown), input files should denote unknown

samples as NA (missing values). If a ‘Class’ file is used, samples not represented in the

‘Class’ file will be omitted from the analysis. The ‘Class’ file may contain information for

more samples than are included in the required long format file; this extra data will simply be

ignored. An example file, ‘ConGenR_example_data_class’, is provided in the CONGENR

source folder.

12

Running CONGENR

Most functions within CONGENR can be run by calling a single function (i.e., ConGen), which

calls necessary supporting functions. Alternatively, users may call supporting functions directly;

this may be particularly useful if users wish to only calculate genotyping errors or convert files to

alternative formats. Information on required inputs is provided with each function description

below. Functions to execute matching procedures must be called directly.

load.ConGenR Function to load CONGENR script and supporting packages

Description

load.ConGenR loads functions included in the CONGENR script into the users R working

directory. Additionally, load.ConGenR checks the users working directory for the

required supporting R package, ‘stringr’, and if it is not present, installs the package before

loading it into the users R workspace.

Usage
load.ConGenR()

Arguments

No arguments are required.

13

ConGen Wrapper function that calls supporting functions to run a full

 analysis, including determining consensus genotypes

Description

ConGen takes a long format data file (e.g., as produced by the program GENEMAPPER

genotypes table) and compares replicates to establish consensus genotypes. ConGen then

calculates PCR success rates (overall, individual sample level; each by locus) and if

requested compares each replicate to the consensus genotype to determine genotyping error

rates. If a class file is provided, ConGen calculates these metrics both overall and by class.

Individual sample level PCR success rates are based on either 50% of the loci (when PID =

NULL) or a user defined number of loci (typically set at the PID). ConGen allows the user to

identify sex identification markers if they are present in the file and determine whether or not

these markers should be included in the calculation of PCR and genotyping error rates.

ConGen can be provided a list of sample IDs (e.g., samples that have been determined to be

low quality or mixed) or prefixes (e.g., researchers may wish to exclude PCR negatives and

may label these with the same prefix) which should be excluded from analysis; this option

serves primarily to reduce computation time on samples of little or no interest.

Usage
ConGen(allele.calls, Class = NULL, rm.prefix = NULL, rm.vector

= NULL, gte = TRUE, sex.id.markers = NULL, rm.sx.id = TRUE,

PID = NULL)

Arguments

allele.calls A data.frame representing a GENEMAPPER genotypes table

 output file. This file can be generated in GENEMAPPER by

 exporting the genotypes table. Data is in the 'long' format, in which

 each row represents a single replicate-marker combination.

 Required columns include (at minimum): Sample.File,

 Sample.Name, Marker, Allele.1, Allele.2, Allele.3, and Allele.4.

 Even if <4 alleles are detected, the resulting columns should be

 present.

Class A data.frame containing two columns representing Sample.ID

 and some numeric classification. Class = NULL (Default)

 indicates that no classifications are present. When Classes are

 present, classes should be represented by positive integers,

 excluding 999 (which is used to denote samples with unknown

 classification). Zero should not be used (0 is reserved for

 consensus genotypes). If classes are known for some sample and

 not others, input files should denote unknown samples as NA

 (missing values).

14

rm.prefix A vector indicating character prefixes which identify sample to

 be removed from the analysis. For example, if you name PCR

 positives and negatives with the prefix ‘PCR’ and you would like

 to exclude these samples from the analyses, you can set

 rm.prefix = c("PCR"). Alternatively, rm.prefix =

 NULL (default) indicates that no samples should be removed

 based on this criteria.

rm.vector A vector providing the names of samples that you would like to

 exclude from the analysis. For example, if you wish to not analyze

 samples 1001 and 1010, you can set rm.vector = c(1001,

 1010). Alternatively, rm.vector = NULL (default) indicates

 that no samples should be removed based on this criteria.

gte A logical argument indicating whether or not genotyping error

 rates should be calculated.

sex.id.markers A vector providing the names of sex identification markers.

 sex.id.markers = NULL (default) indicates that sex ID

 markers are not included. Alternatively, provide a vector with

 the names of the sex ID markers included in the dataset/analysis.

 Note, names are case sensitive and should match the marker names

 found in the allele.calls.

rm.sx.id A logical argument indicating whether or not sex ID markers

 should be removed (excluded) when calculating individual sample

 level statistics.

PID An integer value >0 and ≤ the number of loci (in most cases, this

 should be the number of loci required to meet the probability of

 identity requirements). Individual sample level success is then the

 proportion of samples with successful amplifications at ≥PID loci.

 Alternatively, when PID = NULL, individual sample level

 success will be the proportion of samples with successful

 amplifications at ≥50% of the loci.

Values

samples.removed A data.frame containing the data for any

 samples removed through the rm.prefix or

 rm.vector arguments.

duplicates.removed A data.frame representing duplicates within the

 Class file that were removed.

15

genotypes.complete.long A data.frame containing the ‘long’ format data

 for all replicates analyzed and following the

 removal of unnecessary columns. Missing values

 for alleles are represented with 0.

genotypes.complete.longna A data.frame containing the ‘long’ format data

 for all replicates analyzed and following the

 removal of unnecessary columns. Missing values

 for alleles are represented with NA.

genotypes.complete.flat A data.frame containing the ‘flat’ format data

 for all replicates analyzed. Missing values for

 alleles are represented with 0.

genotypes.complete.flatna A data.frame containing the ‘flat’ format data

 for all replicates analyzed. Missing values for

 alleles are represented with NA.

consensus.genotypes.long A data.frame containing the ‘long’ format

 consensus genotypes resulting from the analyzed

 replicates. Missing values for are represented with

 NA; 0 is used to denote uncertainty.

consensus.genotypes.flat A data.frame containing the ‘flat’ format

 consensus genotypes resulting from the analyzed

 replicates. Missing values for are represented with

 NA; 0 is used to denote uncertainty.

genotyping.errors A data.frame containing the ‘long’ format

 consensus genotypes and replicates. For allele calls,

 missing values within each consensus genotype are

 denoted with NA, while 0 indicates uncertainty.

 Rows representing replicates include 0 for missing

 values. For each replicate row, the presence of a FA

 and ADO, as well as successful amplifications

 (SA), are coded as a binary response (1 = present, 0

 = absent). For each consensus genotype row, the

 number of amplifications attempted (AA) and SA

 are recorded.

Rates A data.frame representing overall PCR success,

 individual sample level PCR success, genotyping

 error rates (FA and ADO) and the number of unique

 samples analyzed, both overall and by class (when

 included).

16

Locus.Rates A data.frame representing overall PCR success

 and genotyping error rates (FA and ADO) by locus.

Success.by.NLoci A data.frame summarizing the number of

 samples that achieved a consensus genotype at 0 to

 n loci, where n is the number of loci included. If

 rm.sx.id = TRUE, sex ID markers are

 excluded.

Success.by.Sample A data.frame identifying the number of loci for

 which a consensus genotype was achieved for each

 sample. If rm.sx.id = TRUE, sex ID markers

 are excluded.

Example
#After loading the example data files:

#Example: Includes a class file, removes samples starting

#with ‘PCR’, removes the sample ‘DPG1’, calculates genotyping

#error rates, removes sex ID markers from individual sample

#level statistics, and determines individual sample level

#statistics based on probability of identity = 7 loci.

> example.results <- ConGen(allele.calls =

ConGenR_example_data_long, Class =

ConGenR_example.data.class, rm.prefix = c("PCR"),

rm.vector = c("DPG1"), gte = TRUE, sex.id.markers =

c("SexIDPrimer-X", "SexIDPrimer-Y"), rm.sx.id = TRUE,

PID = 7)

#View the names of the values in the resulting example file

> names(example.results)

#View the Rates calculated

> example.results$Rates

17

gt.error Function that calculates genotyping error rates, including false

 alleles (FA) and allelic dropout (ADO)

Description

gt.error takes two input files including a reference file and replicates file. The

gt.error function is called directly by the ConGen function, which passes the necessary

files to it, but may be run independently. Both the reference file and replicates file

should be in the ‘long’ format (i.e., one row per sample-locus combination or replicate-locus

combination, respectively). Additional details for each input file are listed below under the

Arguments. The gt.error function compares each replicate to the consensus, or reference,

genotype to determine the presence of FAs and/or ADO, and summarizes genotyping error

rates overall, by sample class (if provided), and by locus.

Usage
gt.error(reference, replicates)

Arguments

reference A data.frame containing one row for each sample-locus

 combination. Genotypes should represent either the consensus

 genotypes (i.e., determined through replicated samples) or

 reference genotypes (generated from a high quality samples).

 Data must contain at least 10 columns that align with the first 10

 columns of the replicates file (details below). Any columns

 beyond the first 10 will not be used and will be discarded. Note:

 Numeric classes for all samples in the reference file should be

 the same; all should be set to 0. Additionally, for each Allele.i

 column (see below), the numeric allele size should be recorded.

 When no amplification is observed, NA should be used (this

 differs from the replicates file).

replicates A data.frame containing one row for each replicate-locus

 combination. Data must contain at least 10 columns that align with

 the first 10 columns of the reference file (details below).

 Note: Numeric classes for all samples in the replicates file

 should be positive integers (excluding 999). Additionally, for each

 Allele.i column, the numeric allele size should be recorded.

 When no amplification is observed, 0 should be used (this

 differs from the reference file).

18

 The first 10 columns of each file should include the following (in

 this order):

1. Sample.ID (factor) - should be the same across replicates of the

same sample.

2. Class (numeric) - positive integer (see notes for differences

between reference file and replicates file).

3. Sample.File (factor) - often contains Sample.ID and some

descriptor (value) to distinguish among replicates.

4. Sample.Name (factor) - often the same or similar to the

Sample.ID, but may contain additional information or

descriptors.

5. Marker (factor) - contains the name of the marker for which the

data is associated.

6. Allele.1 (numeric) - Numeric value for the size in base-pairs of

the allele.

7. Allele.2 (numeric) - Numeric value for the size in base-pairs of

the allele.

8. Allele.3 (numeric) - Numeric value for the size in base-pairs of

the allele.

9. Allele.4 (numeric) - Numeric value for the size in base-pairs of

the allele.

10. GenoType (factor) - there are six possible levels including

">2_Alleles", "Heterozygote", "Homozygote",

"Sample_Failed", "Homozygote_wUnc", "Incomplete".

Values

genotyping.errors A data.frame containing the ‘long’ format

 consensus genotypes and replicate data.

 For allele calls, missing values within each

 consensus genotype are denoted with NA, while 0

 indicates uncertainty. Rows representing replicates

 include 0 for missing values. For each replicate row,

 the presence of a FA and ADO, as well as

 successful amplifications (SA), are coded as a

 binary response (1 = present, 0 = absent). For each

 consensus genotype row, the number of

 amplifications attempted (AA) and SA are recorded.

Class.Rates A data.frame representing PCR success and

 genotyping error rates (FA and ADO) by class

 (when included).

Locus.Rates A data.frame representing PCR success and

 genotyping error rates (FA and ADO) by locus.

19

Overall.PCR.Success The overall PCR success rate across all samples and

 loci.

Overall.ADO The overall ADO rate across all samples and loci.

Overall.FA The overall FA rate across all samples and loci.

Example
#After loading the example data files:

#Example: Identify the names of the loci in the file (i.e.,

#ex.loci), convert the flat format example files to the

#required long format with the flat.to.long function and then

#calculate the genotyping error rates.

> ex.loci <- c("Locus1", "Locus2", "Locus3", "Locus4",

"Locus5", "Locus6", "Locus7", "Locus8", "Locus9",

"SexIDPrimer.X", "SexIDPrimer.Y")

> example.data.ref.long <- flat.to.long(gen.data.flat =

ConGenR_example_data_flat_reference, loci.vec =

ex.loci, reference = TRUE)

> example.data.rep.long <- flat.to.long(gen.data.flat =

ConGenR_example_data_flat_replicates, loci.vec =

ex.loci, reference=FALSE)

> example.results <- gt.error(reference=example.data.ref.long,

replicates = example.data.rep.long)

#View the names of the values in the resulting example file

> names(example.results)

#View the FA and ADO Rates by locus

> example.results$Locus.Rates

20

pcr.success Function that calculates overall PCR success rates

Description

pcr.success is called by either the ConGen or gt.error functions and calculates the

overall PCR success rate as the number of successful amplification / the total number of

amplifications attempted. The gen.data file should be in the ‘long’ format (i.e., one row

per replicate-locus combination, respectively) and contain at minimum the Additional details

for each input file are listed below under the Arguments. The gt.error function compares

each replicate to the consensus, or reference, genotype to determine the presence of FAs

and/or ADO, and summarizes genotyping error rates overall, by sample class (if provided),

and by locus.

Usage
pcr.success(gen.data)

Arguments

gen.data A data.frame in the ‘long format containing one row for each

 sample-locus combination. Missing values for alleles should be

 denoted with a 0 or NA.

Values

Overall.PCR.Success The overall PCR success rate across all samples and

 loci.

Class.PCR.Success A named vector representing PCR success

 rates by class (when included).

Locus.PCR.Success A named vector representing PCR success by

 locus.

21

Example
#After loading the example data files:

#Example: In order to determine success by class, the class

#must be added to the ConGenR_example_data_long file. When

#pcr.success is called directly from the ConGen function, it

#handles this internally. If calling the pcr.success function

#independently, the add.class function must first be used to

#ensure the data is properly formatted (i.e., includes a

#‘Class’ column). If ‘Class’ is not set to NULL, a Sample.ID

#column is required.

> example.data <- cbind(Sample.ID =

ConGenR_example_data_long$Sample.Name,

ConGenR_example_data_long)

> example.data <- add.class(Class =

ConGenR_example_data_class, gen.data =

example.data)[[1]]

> example.results <- pcr.success(gen.data = example.data)

#View the resulting PCR success rates

> example.results

22

sample.pcr.success Function that calculates individual sample level PCR success

Description

sample.pcr.success is called by the ConGen function and calculates the individual

sample level PCR success rate, or the proportion of samples that had successful

amplifications at n loci. When the argument PID = NULL, n = 50% of the loci. Otherwise,

PID may be set to any value between 1 and the total number of loci and n = PID. In practice,

PID will most appropriately be set to the probability of identity (Waits et al. 2001) required

for successful identification of individuals.

Usage
sample.pcr.success(gen.data.long, gen.data.flat, PID = NULL,

sex.id.markers = NULL, rm.sx.id = TRUE)

Arguments

gen.data.long A data.frame in the ‘long’ format containing one row for each

 sample-locus combination. Missing values for alleles should be

 denoted with a 0.

gen.data.flat A data.frame containing the ‘flat’ format data for all replicates

 analyzed. Missing values for alleles should be denoted with a 0.

PID An integer value >0 and ≤ the number of loci (in most cases, this

 should be the number of loci required to meet the probability of

 identity requirements). Individual sample level success is the

 proportion of samples with successful amplifications at ≥PID loci.

 Alternatively, when PID = NULL, individual sample level

 success is the proportion of samples with successful amplifications

 at ≥50% of the loci.

sex.id.markers A vector providing the names of sex identification markers.

 sex.id.markers = NULL (default) indicates that sex ID

 markers are not included. Alternatively, provide a vector with

 the names of the sex ID markers included in the dataset/analysis.

rm.sx.id A logical argument indicating whether or not sex ID markers

 should be removed when calculating sample level statistics.

Values

Overall.Sample.PCR.Success The overall individual sample level PCR success

 rate across all samples and considering n = PID

 loci.

23

Sample.PCR.Success A named vector representing individual sample

 level PCR success rates by class (when included)

 and considering n = PID loci.

Unique.Samples A named vector representing the number of

 samples within each class.

Example
#After loading the example data files:

#Example: In order to determine success by class, the class

#must be added to the ConGenR_example_data_long file. When

#sample.pcr.success is called directly from the ConGen

#function, it handles this internally. If calling the

#sample.pcr.success function independently, the add.class

#function must first be used to ensure the data is properly

#formatted (i.e., includes a ‘Class’ column). If ‘Class’ is

#not set to NULL, a Sample.ID column is required.

> example.data <- cbind(Sample.ID =

ConGenR_example_data_long$Sample.Name,

ConGenR_example_data_long)

> example.data <- add.class(Class =

ConGenR_example_data_class, gen.data =

example.data)[[1]]

> example.results <- sample.pcr.success(gen.data.long =

example.data, gen.data.flat =

ConGenR_example_data_flat_replicates, PID = NULL,

sex.id.markers = NULL, rm.sx.id = TRUE)

#View the resulting individual sample level PCR success rates

> example.results

24

rm.samples Function that removes identified samples from the analysis

Description

rm.samples is called by the ConGen function and removes those samples identified by

either the rm.prefix or rm.vector arguments.

Usage
rm.samples(rm.prefix = NULL, rm.vector = NULL, gen.data)

Arguments

rm.prefix A vector indicating character prefixes which identify sample to

 be removed from the analysis. This prefix is passed to

 rm.samples by the ConGen function.

rm.vector A vector providing the names of samples that you would like to

 exclude from the analysis. This vector of sample names is passed

 to rm.samples by the ConGen function.

gen.data A data.frame containing genetic data in the 'long' format,

 where each row represents a single replicate-marker combination.

 This file is passed to rm.samples by the ConGen function.

Values

allele.calls A new data.frame containing genetic data in the

 'long' format, excluding those samples that were

 removed.

samples.removed A data.frame containing information on the

 samples removed.

25

add.class Function that combines the supporting class information to the

 genetic data.

Description

add.class is called by the ConGen function and merges the Class file with the genetic

data. Samples not included in the class file are excluded, and therefore all samples that are to

be analyzed should have a class assigned (Note: if only some samples have a known class,

999 should be used by convention to represent the class of unknown samples). add.class

may be useful for formatting files not processed by the ConGen function, as can be seen in

the example for the sample.pcr.success function.

Usage
add.class(Class=NULL, gen.data)

Arguments

Class A data.frame containing two columns representing Sample.ID

 and some numeric classification. Class = NULL (Default)

 indicates that no classifications are present. When Classes are

 present, classes should be represented by positive integers,

 excluding 999 (which is used to denote samples with unknown

 classification). Zero should not be used (0 is reserved for

 consensus genotypes). If classes are known for some sample and

 not others, input files should denote unknown samples as NA

 (missing values).

gen.data A data.frame containing genetic data in the 'long' format,

 where each row represents a single replicate-marker combination.

 This file is passed to add.samples by the ConGen function.

Values

allele.calls A new data.frame containing genetic data in the

 'long' format, excluding those samples that were

 removed.

duplicates.removed A data.frame containing information on any

 samples represented more than once in the Class

 file.

26

det.congen Function that compares replicated genetic samples and

 determines the consensus genotype.

Description

det.congen is called by the ConGen function and employs common protocols for

determining consensus genotypes from replicated (muli-tubes approach) DNA samples (e.g.,

Frantz et al. 2003, Flagstad et al. 2004, Zhan et al. 2010). det.congen requires that single-

locus genotypes be observed at least twice for heterozygous and three times for homozygous

genotypes. Consensus genotypes may include uncertainty, which are characterized by either

the confirmation of one allele (i.e., observed 2 – 4 times) while a second allele is observed

only once, or the observation of a single allele only once.

Usage
det.congen(alleles)

Arguments

alleles A data.frame containing genetic data in the 'long' format,

 where each row represents a single replicate-marker combination.

 This file is passed to det.congen by the ConGen function.

Values

consensus.genotypes.long A data.frame containing the ‘long’ format

 consensus genotypes resulting from the analyzed

 replicates. Missing values for are represented with

 NA; 0 is used to denote uncertainty.

consensus.genotypes.flat A data.frame containing the ‘flat’ format

 consensus genotypes resulting from the analyzed

 replicates. Missing values for are represented with

 NA; 0 is used to denote uncertainty.

27

det.genotype Function that determines the type of genotype observed for a

 replicate.

Description

det.genotype is called by the ConGen function and is an internal function that

determines the type of genotype observed for each replicate. Specifically, det.genotype

determines if the replicates genotype is heterozygous (i.e., 2 alleles observed) or homozygous

(i.e., 1 allele observed), or if no alleles (i.e. sample failed) or >2 alleles were observed. This

function facilitates other analyses and is not intended to provide the final determination of

genotypes.

Usage
det.genotype(alleles)

Arguments

alleles A data.frame containing genetic data in the 'long' format,

 where each row represents a single replicate-marker combination.

 This file is passed to det.genotype by the ConGen function.

Values

GenoType A vector containing the genotype determination

 (i.e., ‘Sample Failed’, ‘Homozygote’,

 ‘Heterozygote’, or ‘>2 alleles’) for each replicate.

28

samp.details Function that returns a summaries of the number of loci for

 which a consensus genotype has been achieved.

Description

samp.details is called by the ConGen function and is an internal function that

summarizes and reports the number of loci for which a consensus genotype was achieved.

samp.details considers only genotypes without uncertainty as consensus genotypes.

Usage
samp.details(gen.data.long, con.gen.flat, sex.id.markers =

NULL, rm.sx.id = TRUE)

Arguments

gen.data.long A data.frame containing genetic data in the 'long' format,

 where each row represents a single replicate-marker combination.

 This file is passed to samp.details by the ConGen function.

con.gen.flat A data.frame containing the ‘flat’ format consensus genotype

 data for all samples analyzed. Missing values for alleles should be

 denoted with a 0. This file is passed to samp.details by the

 ConGen function.

sex.id.markers A vector providing the names of sex identification markers.

 sex.id.markers = NULL (default) indicates that sex ID

 markers are not included. Alternatively, provide a vector with

 the names of the sex ID markers included in the dataset/analysis..

rm.sx.id A logical argument indicating whether or not sex ID markers

 should be removed when calculating individual sample level

 statistics.

.

Values

Success.by.Number.of.Loci A data.frame summarizing the number of

 samples that achieved a consensus genotype at 0 to

 n loci, where n is the number of loci included. If

 rm.sx.id = TRUE, sex ID markers are

 excluded.

Success.by.Sample A data.frame identifying the number of loci for

 which a consensus genotype was achieved for each

 sample. If rm.sx.id = TRUE, sex ID markers

 are excluded.

29

sort.alleles.long Function that re-sorts alleles within ‘long’ format files

 following analysis to so that alleles conform to standard orders.

Description

sort.alleles.long is called by the ConGen function and re-sorts the alleles within a

‘long’ format file for each sample and locus so that the allele order conforms to the standard

ordering. Specifically, sort.alleles.long ensures that smaller alleles of a

heterozygous genotype appear first (e.g., 70/74 as opposed to 74/70) and that uncertainty in

allele calls appear after confirmed alleles (e.g., 70/0 as opposed to 0/70) for genotypes with

uncertainty. sort.alleles.long is intended to be an internal function that cleans data

following analyses that often result in sorting of alleles into a non-standard order.

Usage
sort.alleles.long(z)

Arguments

z A data.frame containing genetic data in the 'long' format,

 where each row represents a single replicate-marker combination.

 This file is passed to sort.alleles.long by the ConGen

 function.

Values

z A data.frame containing the ‘long’ format

 genotype data where the order of the alleles

 conforms to standard reporting.

30

sort.alleles.flat Function that re-sorts alleles within ‘flat’ format files

 following analysis to so that alleles conform to standard orders.

Description

sort.alleles.flat is called by the ConGen function and re-sorts the alleles within a

‘flat’ format file for each sample and locus combination so that the allele orders conform to

standard ordering. Specifically, sort.alleles.flat ensures that smaller alleles of a

heterozygous genotype appear first (e.g., 70/74 as opposed to 74/70) and that uncertainty in

allele calls appear after confirmed alleles (e.g., 70/0 as opposed to 0/70) for genotypes with

uncertainty. sort.alleles.long is intended to be an internal function that cleans data

following analyses that often result in sorting of alleles into a non-standard order.

Usage
sort.alleles.flat(z)

Arguments

z A data.frame containing genetic data in the 'flat' format,

 where each row represents a single replicate-marker combination.

 This file is passed to sort.alleles.flat by the ConGen

 function.

Values

z A data.frame containing the ‘flat’ format

 genotype data where the order of the alleles.

31

long.to.flat.format Function that converts ‘long’ format data to the ‘flat’ format.

Description

long.to.flat.format is called by the ConGen function and reformats ‘long’ format

data (i.e., data where each row represents a replicate-locus combination) into the ‘flat’ format

(i.e., each row represents a replicate with loci represented by multiple columns).

Usage
long.to.flat.format(alleles)

Arguments

alleles A data.frame containing genetic data in the 'long' format,

 where each row represents a single replicate-marker combination.

 This file is passed to long.to.flat.format by the ConGen

 function.

Values

genotypes.complete.flat A new data.frame containing genetic data in the

 'flat' format. Missing values for alleles are denoted

 by 0.

genotypes.complete.flatna A new data.frame containing genetic data in the

 'flat' format. Missing values for alleles are denoted

 by NA.

32

flat.to.long Function that converts ‘flat’ format data to the ‘long’ format.

Description

flat.to.long reformats ‘flat’ formatted data (i.e., each row represents either a replicate

[for replicate data] or a sample [for consensus or reference genotypes] with loci represented

by multiple columns) into ‘long’ formatted (i.e., data where each row represents a replicate-

locus or sample-locus combination, respectively). This function is not called by the ConGen

function, but assists users with getting data in the ‘flat’ format reformatted for use with the

ConGen or gt.error functions.

Usage
flat.to.long(gen.data.flat, loci.vec, reference = FALSE)

Arguments

gen.data.flat A data.frame containing genetic data in the 'flat' format,

 where each row represents either a replicate (for replicate data) or

 a sample (for consensus or reference genotypes) with loci

 represented by multiple columns.

loci.vec A vector containing the names of the loci contained within

 gen.data.flat. Names of loci are case sensitive and should

 match the representation of the names in gen.data.flat.

 Within loci.vec each names should be a character string.

reference A logical argument indicating whether or not the input genetic data

 represents consensus genotypes (or reference genotypes). If

 reference = FALSE (Default), the input data represents

 replicate data.

Values

long.format.gen.data A new data.frame containing genetic data in the

 'long' format.

33

Example
#After loading the example data files

#Example: Identify the names of the loci in the file (i.e.,

#ex.loci), convert the flat format example files to the

#required long format with the flat.to.long function and then

#calculate the genotyping error rates.

> ex.loci <- c("Locus1", "Locus2", "Locus3", "Locus4",

"Locus5", "Locus6", "Locus7", "Locus8", "Locus9",

"SexIDPrimer.X", "SexIDPrimer.Y")

> example.data.ref.long <- flat.to.long(gen.data.flat =

ConGenR_example_data_flat_reference, loci.vec =

ex.loci, reference = TRUE)

> example.data.rep.long <- flat.to.long(gen.data.flat =

ConGenR_example_data_flat_replicates, loci.vec =

ex.loci, reference=FALSE)

34

congen.matching Function that identifies samples that have fully or partially

 matching multilocus genotypes

Description

congen.matching takes a flat format consensus genotype file (e.g., as produced by the

ConGen function) and either a long format consensus genotype file (e.g., as produced by the

ConGen function, from which to extract loci information) or a vector identifying the loci

contained within the flat format file. The congen.matching function then compares the

multilocus genotypes of samples to one another and provides a simple and condensed output

of matches and partial matches (based on criteria set). If numeric location data are provided,

congen.matching calculates the distance between the focal sample (the sample to which

other sample are compared) and each full or partial match. Otherwise, if categorical location

data are provided, the function appends the location data to the output to facilitate

comparisons. If location data are provided, the location data type should be identified in the

appropriate argument. By default, the congen.matching function returns full matches

only, but this can be modified by setting the argument for matches required to a value less

than the total number of loci. By default the congen.matching function only reports

perfect matches once, but this can be overridden. The user may consider or ignore loci with

uncertainty (i.e., alleles coded as 0 indicating uncertainty in the final consensus genotype).

To consider uncertainty indicates that genotypes must match perfectly (e.g., 144/0 = 144/0

but 144/0 ≠ 144/144), while ignoring uncertainty includes comparisons with uncertainty as

matches (e.g., 144/0 = 144/144). Like ConGen, congen.matching allows the user to

identify sex identification markers if they are present in the file and determine whether or not

these markers should be included in the matching procedures.

Usage
congen.matching(congen.data.flat, congen.data.long = NULL,

loci.names = NULL, matches.required = NULL, sex.id.markers

= NULL, rm.sx.id = TRUE, consider.uncertainty = TRUE,

skip.matches = TRUE, location.data = NULL,

location.data.type = NULL)

Arguments

congen.data.flat A data.frame representing consensus genotypes in the

 flat format. This file is generated as an output of the

 ConGen function. At minimum, this file should have a

 ‘Sample.ID’ column (first column), followed by ≥2

 columns for each locus or marker under consideration.

 Each locus or marker column name must begin with the

 name of the locus (as identified by the

 congen.data.long file or the loci.names

 argument) and each locus or marker should be represented

35

 by ≥2 columns (only the first 2 columns will be considered

 and any additional columns will be ignored).

congen.data.long A data.frame representing consensus genotypes in the

 long format. This file is generated as an output of the

 ConGen function. If the resulting

 ‘consensus.genotypes.long’ file is not available from the

 ConGen function, then provide the names of the loci to

 loci.names and leave congen.data.long =

 NULL (Default).

loci.names A vector with the names of loci (or markers) included in

 the congen.data.flat file. loci.names = NULL

 (default) indicates that a congen.data.long file has

 been included, from which the name of the loci (or

 markers) will be extracted. Note, names are case sensitive

 and should match the marker names found in
 congen.data.flat.

matches.required A numeric value between 1 and the number of loci under

 consideration. This value represents the number of loci (or

 markers) that must match in order for two sample to be

 considered a match. Often, this value will be selected to

 align with the number of loci required to meet desired

 levels of probability of identity. Alternatively,

 matches.required = NULL (default) indicates that

 samples must match at all markers under consideration to

 be considered a match.

sex.id.markers A vector providing the names of sex identification

 markers. sex.id.markers = NULL (default) indicates

 that sex ID markers are not included. Alternatively, provide

 a vector with the names of the sex ID markers included

 in the dataset/analysis. Note, names are case sensitive and

 should match the marker names found in
 congen.data.flat.

rm.sx.id A logical argument indicating whether or not sex ID

 markers should be removed (excluded) when conducting

 matching procedures.

consider.uncertainty A logical argument indicating whether or not loci with

 uncertainty must be a perfect match to be considered a

 match. Setting consider.uncertainty = FALSE

 allows loci containing uncertainty to be ignored.

36

skip.matches A logical argument indicating whether or not samples that

 are a perfect match to a sample already analyzed should be

 skipped. Setting skip.matches = TRUE (Default) will

 avoid analyzing samples that have already been matched to

 another sample as a full match (at all loci or markers) as the

 focal sample, will reduce computational time, and will

 shorten the results by reducing duplicate comparisons.

location.data A data.frame containing location data for samples

 being matched. This file should contain 2 (for categorical

 locations) or 3 (for numeric locations) columns. The first

 column in both cases should contain the Sample IDs (these

 should match those in the congen.data.flat [case

 sensitive]). For categorical location data, the second

 column should include a categorical location index. For

 numeric location data, columns 2 and 3 should contain the

 X and Y location coordinates, respectively. The

 location.data file may include more samples than

 contained in the congen.data.flat file. If location

 data are not available for all samples in the

 congen.data.flat data, these samples should still be

 included with NA used to denote their locations.

location.data.type A character string indicating whether or not the

 location data provided is ‘Numeric’ or ‘Categorical’.

 location.data.type = NULL (Default) indicates

 that no location file is provided.

Values

Matches.required A value indicating the number of matches required

 in the analysis.

consider.uncertainty A logical response indicating the condition used in

 the analysis.

skip.matches A logical response indicating the condition used in

 the analysis.

matching.data A data.frame containing the results of the

 matching analysis. Focal samples (those samples to

 which other samples were compared) are denoted

 with a ‘Mismatches’ value of 9999. The

 ‘Mismatches’ value for samples being compared

 indicate the number of loci (or markers) that

 differed between the preceding focal sample and the

37

 sample under consideration. When location data are

 provided, categorical locations or the Euclidian

 distance between the sample under consideration

 and the preceding focal sample are appended as the

 last column. Samples with no matches are stored at

 the end of the file and have a ‘Mismatches’ value of

 9999 (with no comparative samples after). This file

 contains the same information as the

 matching.list data, but has been collapsed

 into a single data.frame.

matching.list A list containing the results of the matching

 analysis. Each list element contains a comparison

 between one focal sample (the sample to which

 other samples were compared; the top row in the list

 element) and all samples determined to be a match

 to the focal sample. The last list element, contains

 all of the samples that were determined to have no

 matches. Within each list element, ‘Mismatches’ =

 9999 indicates the focal sample (row one except in

 the last list element) and all other ‘Mismatches’

 values indicate the number of loci (or markers) that

 differed between the focal sample and the sample

 under consideration. Location data are included in

 the same way as with matching.data.

Example
#After loading the example data files:

#Example: First, rerun the ConGen() example to create input

#files. Then, run the matching procedures with no location

#data, with numeric location data, and with categorical

#location data.

> example.results<-ConGen(allele.calls =

ConGenR_example_data_long,

Class = ConGenR_example_data_class,

rm.prefix = c("PCR"), rm.vector = c("DPG1"),

gte = TRUE, sex.id.markers = c("SexIDPrimer-X",

"SexIDPrimer-Y") , rm.sx.id = TRUE, PID = 7)

38

 > example.matching.noloc<-congen.matching(congen.data.flat =

 example.results$consensus.genotypes.flat,

congen.data.long =

example.results$consensus.genotypes.long, loci.names =

NULL, matches.required = 9, sex.id.markers =

c("SexIDPrimer-X", "SexIDPrimer-Y"), rm.sx.id = FALSE,

consider.uncertainty = TRUE, skip.matches = TRUE,

location.data = NULL, location.data.type = NULL)

> names(example.matching.noloc)

> example.matching.noloc$matching.list #View list results

> example.matching.numloc<-congen.matching(congen.data.flat

= example.results$consensus.genotypes.flat,

congen.data.long =

example.results$consensus.genotypes.long, loci.names =

NULL, matches.required = 9, sex.id.markers =

c("SexIDPrimer-X", "SexIDPrimer-Y"), rm.sx.id = FALSE,

 consider.uncertainty = TRUE, skip.matches = TRUE,

location.data = ConGenR_example_location_num,

location.data.type = "Numeric")

> example.matching.numloc$matching.list

> example.matching.catloc<-congen.matching(congen.data.flat

= example.results$consensus.genotypes.flat,

congen.data.long =

example.results$consensus.genotypes.long, loci.names =

NULL, matches.required = 9, sex.id.markers =

c("SexIDPrimer-X", "SexIDPrimer-Y"), rm.sx.id = FALSE,

consider.uncertainty = TRUE, skip.matches = TRUE,

location.data = ConGenR_example_location_cat,

location.data.type = "Categorical")

> example.matching.catloc$matching.list

39

add.loc Function that combines the supporting location information to

 matching data.

Description

add.loc is called by the congen.matching function and merges the

location.data file with the results of the matching. All samples present in the matching

results (i.e., in the flat formatted consensus genotypes used in the matching) should be

present in the location.data file (though values may be set to NA if location data for

some samples are unknown). When location data are numeric, add.loc calculates the

Euclidean distance between matches and merges this value with the results of the matching.

Usage
add.class(list.data, location.data, location.data.type =

c("Numeric", "Categorical"))

Arguments

list.data A list containing results from congen.matching.

 This argument is passed from the congen.matching

 function.

location.data A data.frame containing location data for samples. This

 argument is passed from the congen.matching

 function. See the congen.matching function

 description for details on format.

location.data.type A character string indicating whether or not the

 location data provided is ‘Numeric’ or ‘Categorical’.

 This argument is passed from the congen.matching

 function. See the congen.matching function

 description for details on format.

Values

matching.list A list containing the results of the matching analysis

 with location data appended. This list is returned

 internally to the congen.matching function. See the

 congen.matching function description for details on

 format.

40

Literature Cited

Broquet T, Petit E (2004) Quantifying genotyping errors in noninvasive population genetics. Mol

Ecol 13:3601–3608.

Flagstad Ø, Hedmark E, Landa A, Brøseth H, Persson J, Andersen R, Segerström P, Ellegren H

(2004) Colonization history and noninvasive monitoring of a reestablished wolverine

population. Conserv Biol 18:676–688.

Frantz AC, Pope LC, Carpenter PJ, Roper TJ, Wilson GJ, Delahay RJ, Burke T (2003) Reliable

microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA. Mol

Ecol 12:1649–1661.

Lampa S, Henle K, Klenke R, Hoehn M, Gruber B (2013) How to overcome genotyping errors in

non-invasive genetic mark-recapture population size estimation–a review of available

methods illustrated by a case study. J Wildl Manage 77:1490–1511.

R Core Team (2015). R: a language and environment for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria.

Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, Waits LP, Bouvet J

(1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic

Acids Res 24:3189–3194.

