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PREPARING FOR THE WORKSHOP 
 
This workshop is intended to be in introduction to R and to provide participants with the ability 
to manage and prepare data for complex analyses in R. This necessitates that the workshop 
start with the most basic operations in R. Still, the workshop ramps up to complicated user 
defined functions, looping constructs, and simulation capabilities.  
 
Workshop attendees can take several approaches to participating and benefiting from this 
workshop. One strategy (1) is to forego the computer and use this document to follow along 
and take notes as the instructor demonstrates the functionalities of R. This strategy has worked 
well for some, because all of the course materials (e.g., R code, explanations) are available to 
participants and can later be run and manipulated at an individual’s preferred speed. Another 
strategy (2) is to bring a laptop and run the code that is being demonstrated on your own 
during the workshop, allowing yourself to become more comfortable with using R. This works 
well for those with some previous exposure to R and/or those comfortable with simultaneously 
following along and coding. A final strategy (3) would be to combine the first two: bring your 
laptop and run the code that is being demonstrated during the workshop initially, but to forego 
trying to run the more complex code that limits your ability to follow along. This strategy tends 
to be the most employed and allows participants to pay closer attention to the detailed code 
structuring and information provided by the instructor when working with the looping and 
simulation functionality.  
 
If you intend to apply either of the latter two strategies (i.e., you want to have your laptop and 
the potential to run code), you will need to install the necessary programs, packages, and data 
prior to the start of the workshop, because the convention center will not be offering wireless 
internet. Specifically, you should take the following steps prior to arriving at the workshop: 

1. Install R (This step requires that you have internet access) 

 Details for installing R can be found below on Page 3.  
2. Load necessary packages and import data sets 

 After installing R, open R and type “getwd()” (without quotes) into the R console. 
R will return the identity of your working directory (example on Page 19 below).  

 From the folder that you downloaded (i.e., MW.Workshop), navigate to the 
DataFiles folder, select the 6 data files, and copy these directly into your working 
directory folder (i.e., the location identified by the getwd() function). 

 From the MW.Workshop folder, open the MW.Workshop.R file with a simple 
text editor (e.g., Notepad++ or Notepad).  

 In R, run the code at the beginning of the MW.Workshop.R file between “##Load 
Workshop files - Start” and “##Load Workshop files - End” by copying and 
pasting this code into the R Console. This code will attempt to load necessary 
packages and files to R. You may be prompted to select a CRAN mirror. If so, 
simply select a USA CRAN mirror close to you (e.g., KS) 
(This step requires that you have internet access) 

 Close R, but be sure to select “Yes” to save the workspace image when asked. 
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OBJECTIVES 
 
To introduce participants to the functionality of R and to provide the knowledge necessary to 
effectively begin using R 
 
To provide a foundation on syntax and R programming code that will allow users to interpret 
and therefore utilize the R language 
 
To introduce participants to the benefits and structures of looping functionality an user defined 
functions, and give participants the opportunity to explore these capabilities within R 
 
This course is not a statistical course or a complete review of R 
 

INTRODUCTION & BACKGROUND 
 
What is R? 

• R is an open source software environment for statistical computing and graphics 
• R is a fully functional programming language 
• R is quickly becoming an industry standard 
• R is a free alternative to costly data analysis software 

 
Advantages of using R: 

1. Cost  

 Downloaded FREE of charge 
2. Convenience 

 Accessible through the Comprehensive R Archive Network (CRAN) along with 
thousands of data analysis/graphing packages  

 Scripts can be used to store detailed accounts of how you managed, modified, 
and analyzed you data. 

3. Community  

 The R community is comprised of hundreds of thousands of users that are 
working on developing code, improving performance, and providing support 

 The R Core Development Team ensures packages meet documentation and 
quality standards 

4. Capability 

 Comparable or superior to commercial data analysis/graphic packages  

 Great for analyzing data, conducting simulations, testing new algorithms, and 
plotting graphics 

 Users (including you) can modify code to meet your needs and can extend R’s 
capabilities by contributing packages 
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Disadvantages of using R: 
1. Programming can be intimidating 

 It is critical that users with no or limited programming experience start using R to 
accomplish simple data management and summary statistic procedures. This will 
allow users to begin using R without feeling like they are programming. They can 
then become comfortable with the syntax and eventually transition into more 
complex coding and programming as their needs and experience grows. 

 The only way to learn R, is to use R 
2. Available code (online) may not be tested 

 Although the functionality downloaded through the CRAN has been tested, code 
available through one of the thousands of independent websites and/or forums 
may not always be tested 

 This does not mean you should not use these resources or this code, but rather, 
that you should be able to interpret the R language and ensure that code is 
performing the desired task before implementation 

3. Packages may lack desired operations or may be overlapping 

 Packages are often designed by individuals or teams to meet their specific needs 

 Some packages have some of the same procedures or methods (though they 
may have been named differently) 

 Other desired operations may be lacking, or may be difficult to find 
4. Technically, no technical support 

 Although R does not provide a technical support department, there are an 
unprecedented number of user based help pages, forums, and email list-serves 

 The R community provides all of the unofficial technical support that one may 
need 
 
 

INSTALLING R 
 

 Visit the official R Website (www.r-project.org) and click on the “download R” link 

 Scroll through the available CRAN Mirror sites and select the site located closest to you 

 Select the download that corresponds to your operating system (i.e., Linux, Mac, or 
Windows) 

 Downloading for the first time: Select the “base” subdirectory  

 Click on the “Download R” link, which indicates the version and the operating system 

 When given the option, choose the “Run” option for the executable 

 Walk through the Setup Wizard then click “Finish”– Recommend using all of the default 
settings 

  

 
 
 

http://www.r-project.org/
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THE R GUI & CONSOLE 

 
Navigate to your programs and click on R to launch the R GUI (Graphical User Interface) 

 Alternatively, during set up you may have added a quick launch icon to your start menu 
or desktop 

 
The R GUI: 

 May have a slightly different appearance and/or layout on different platforms 

 The standard R GUI is very basic, and has only limited functionality 

 While this does not limit the capability of R, it can make producing complex algorithms 
or scripts cumbersome 

 There are a few quick key icons for loading and saving you workspace, for copying and 
pasting, and stopping and printing 

 More options can be found through the drop down tabs (Recommendation: before you 
start working in R, take a moment to go through the options available and familiarize 
yourself with the Console and drop down tab functionalities) 

 
 
The R Console: 

 Where you enter your commands and instruct R on what you would like to do 

 The command line is indicated by a prompt, which looks like a greater than sign “>” 

 Following an entry to the command line, press the enter button and R will perform 
some task and/or return some value or character 

 If a command is incomplete when you press enter, the next line will begin with a 
continuation sign “+”  rather than a “>”, indicating that you need to still complete the 
expression on the line(s) above 
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Alternative R GUIs: 

 There are a number of alternative R GUIs that have been developed and that can be 
downloaded free of charge 

 These GUIs often offer improved code management by providing formatting options, 
coloring of code, and direct running of code in R 

 They also allow you to SAVE your code so that you can rerun analyses, reuse you code, 
and recall how your analyses were conducted 

 
A list of some alternative R GUIs: 

RStudio    There are many more alternative GUIs. Many GUIs  
Tinn-R (pictured below)  are platform specific, so explore which will work on 
R Commander    your operating system 
Rattle GUI 
RKWard    Each have different benefits, so it is important to  
RExcel     find the GUI that meets your needs and style of use 
Eclipse with StatET 
RapidMinor R extension 
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R SYNTAX & COMMAND LINE ENTRIES 
 
A few syntax items that are used frequently and that you should be able to recognize quickly:   
 

<- Assignment notation; creates objects 
 

 The left arrow (a combination of the less than and dash), is the assignment 
notation and is used to assign values or results to an object  symbol 

 
# Comment notation 

 

 The comment notation is incredibly valuable and I would suggest that as you 
learn R, that you notate your code with comments to help you keep track of 
what each line of code is doing 

 The comment notation tells R that everything to the right of the “#” is a 
comment and does not have any inherent interpretation in R 

 Can be used in data that is being imported to support metadata (e.g., 
comments on data collection procedures, challenges, or potential data 
complications) 

 
c() Concatenate method joins values together into a vector 

 

 The concatenate method is used very frequently and is used to create a 
vector, or string of values (or characters) that are joined together in order 
and that can be referenced by its location in the vector 

 
: Series notation 

 

 The series notation creates a sequential series from the first value to the 
second value in a step-wise fashion by increments of 1 

 
Example: 
 > x<-c(1:10)  #store the vector 1, 2, …, 10 as x 
 > x 
  [1]  1  2  3  4  5  6  7  8  9 10 
 

 We are calling a function, concatenate(), denoted by c(), and we are telling it to 
create a vector of 10 values numbered 1 to 10, and to assign these values to the 
object symbol x 

 We are storing the resulting vector to x, so R does not print the results to the screen 

 To see the results, we must call x 

 Note that the “[1]” index indicates that the number immediately to the right of the 
index is the FIRST element of the vector x 
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Three Types of entries to the command line prompt: 
1. Methods() – an object that does something in R 

 Often referred to as a function 

 Easily distinguishable because they are followed by ( ) 

 Depending on the complexity, may or may not require arguments within the ( ) 
 
May have named arguments that can be passed to the function by placing them in the ( )  
 
> Function(argument1=value1, argument2=value2,…) 

 Separate multiple arguments with commas 

 If arguments are in their defined order and all arguments are included, then the 
argument names can be omitted 

 
Three Sources of Methods: 

 Many methods built into the base R download 

 Many more available via packages 

 Can create your own methods 
 
*Note: It is critical to review the help page for methods with help(method) or ?method to 
obtain the description, arguments, usage, and examples 
 
Frequently used help/search methods: 
 
> help()  or  > ? 

 Allows you to View the html format for a specific function or method in R 

 Does not require internet access 

 Requires that you know that name of the function/method  

 Must pass the name of the function to help(function) or ?function as an argument 
 
> help.search()  or  > ??            

 “Fuzzy search” allows you to search without knowing the exact name  

 Does not require internet access 

 Must pass some name or partial name, such as fisher for fisher.test, to 
help.search("fisher") or ??fisher as an argument 

 Note: help.search() requires "  ", while ?? does not 
 
Example of arguments in their natural order with the rnorm() function: 
 
rnorm()  #Method that selects n random numbers from a normal distribution 
 
> rnorm(n, mean=0, sd=1)   #Usage outlined under help(rnorm) 

 Because the mean and sd are set to specific values, omission of these arguments will tell 
R to use the default values 
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> rnorm(100)     #Requires n; defaults for mean and sd 
> rnorm(100, mean=2, sd=1)   #Change mean and sd  
> rnorm(100, 2, 1)  #same, with argument names omitted 
 
Returns a vector of 100 values drawn at random from a normal distribution with a mean of 2 
and standard deviation of 1 

 
 
Example of a method and the use of arguments with the ls() function: 
 
ls()   #Lists the objects in your workspace 

 Excludes objects starting with a “.” unless the argument “all.names” is set to TRUE 
  
> help(ls)  #First look at the usage as outlined with the help() method 
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The argument “pattern” allows you to use ls() to effectively search your workspace: 
 
#Search for all objects with the pattern "transect" within name 

 
 
The argument “pattern” combined with a “grep” pattern (^) further refines the search”: 
 
#Search for all objects that begin with the pattern "transect" 
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2. Variables – an object that stores data/information 

 Objects operated on by R 
 

Naming standards (apply to methods as well): 

 CaSe SeNsItIve 
  my.data1  These are all different variables 
  My.data1  because they each use a different 
  MY.DATA1  combination of upper and lower case  
 

 May contain letters, numbers, periods, and underscores 
• Should always start with a letter 
• Because system variables start with a “.”, these variables are not listed with ls() 
• Cannot have spaces; words are usually separated with a period 

 
Variables can be used to store: 

 Simple values and expressions 
 > x<-6   #read as “x gets 6” 
 > y<-4   #does not print by default, because value is being stored  
 > x+y   #prints by default to console (value not being stored to an object) 
 [1] 10 
 
 > z<-x+y   #substitution occurs during assignment 

> z   #Subsequently changing the value of x will not change z 
[1] 10   #[1] indicates that the following value of 10 is the first element 

  

 Results of a method 
> Y<- c(1:3,5:8)*8  #Concatenate the series 1 to 3 and 5 to 8, then multiply each by 8 
> Y   #Note, capital Y is different from the lowercase y above  
[1]  8 16 24 40 48 56 64 
 
> Z<-sqrt(Y)  #Take the square root of the vector Y and store as Z 
> Z   #View the vector Z 
[1] 2.828427 4.000000 4.898979 6.324555 
[5] 6.928203 7.483315 8.000000 

 
Common objects and their referencing indices: 

 Vectors** v[i]  #i = index of element I in vector v 

 Matrices** m[r,c]  #r,c = index of element in row r and column c of matrix m 

 Arrays** a[r,c,m] #r,c,m = index of element in row r, column c, and matrix m  
  of array a 

**Note: Vectors are restricted to a single data type. Matrices are 2-dimensional extensions of 
vectors and arrays are 3-dimensional extensions of vectors. Consequently, both matrices and 
arrays are also restricted to a single data type. 
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 Data frames* df[r,c]  #r,c = index of element in row r and column c of data  
  frame df 

   df[[c]]  #c = index of column c (returns entire column) 
   df[[c]][r] #c = index of column c, while r returns the element in row  

  r of column c 

 Lists*  L[[i]]  #i = index of element i in list L 
  L[[i]][g]  #g = index of element g in list element i (if L[[i]] returns a  

  vector) 
   L[[i]][r,c] #r,c = index of element in r and column c in list element i  

  (if L[[i]] is a 2D element such as a matrix or data frame)  
 
*Note: Data frames and lists are not restricted to a single data type (though any vectors, 
matrices, or arrays contained within them are). Ecologists commonly use data frames to store 
their data, since each column tends to represent a different variable which varies in type (e.g., 
numeric vs factor). Lists may contain vectors, matrices, arrays, data frames, or lists, and are 
therefore flexible at storing complex data sets of varying data types. 
  
Common data types for a vector and examples of each: 

 Character strings 
> canids<-c("fox", "wolf", "jackal", "fox")    
> canids 
[1] "fox" "wolf" "jackal" "fox" 
 

 Factor  #Using the factor() function, the character vector above is converted  
> canids<-factor(canids)   

> canids   #Now the output assigns each element to a factor level 

[1] fox wolf jackal fox    

Levels: fox jackal wolf 

 

 Logical 
> foxes<-canids=="fox" #A test for which elements are fox returns a logical vector 
> foxes    #recall the original canid levels were: fox wolf jackal fox  
[1] TRUE FALSE FALSE TRUE 
 

 Numeric     
> canids<-as.numeric(canids) #Converts factors to numeric based on the level 
> canids   #Recall the levels for canids were: fox jackal wolf 
[1] 1 3 2 1    
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Avoid creating variables that conflict with the following: 

 NA    #Represents missing values (Not Available) 

 NULL    #Used as an argument in functions to indicate no value has  
#been assigned, or to initialize an empty variable 

 NaN    #Not a number–result from in a non-sensible computation  

 Inf (-Inf)   #Infinity and negative infinity 

 TRUE  (or T)   #Logical  

 FALSE (or F)   #Logical 
 
3. Operators – simple methods built into R 
 
> c(1:12) %% 4 == 0           #Logical test for multiples of 4 
[1] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE 

 
Table of common operators 

Operator Description Operator Description 

+ Addition & AND (element wise) 

- Subtraction && AND (programming control flow) 

* Multiplication | OR (element wise) 

/ Division || OR (programming control flow) 

< Less than ^ Raised to the power of 

<= Less than or equal to ** Raised to the power of 

> Greater than : Generate integer sequence 

>= Greater than or equal to %o% Outer product (matrix calculations) 

== Equal to %*% Matrix multiplication 

!= Not Equal to ~ Model relationship between variables 

! Logical negation … … 
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REFERENCING YOUR DATA 
 
Referencing elements of a variable by location using [ ]: 
 > Z 
 [1] 2.828427 4.000000 4.898979 6.324555 
 [5] 6.928203 7.483315 8.000000 
 

> Z[4]      #reference an single element  
[1] 6.324555 

 
> Z[4:6]       #reference a series of elements  
[1] 6.324555 6.928203 7.483315 

 
> Z[c(4,6)]   #c() for referencing >1 non-sequential element  
[1] 6.324555 7.483315 
 

Referencing elements of a variable by conditions: 
 > Z 
 [1] 2.828427 4.000000 4.898979 6.324555  
 [5] 6.928203 7.483315 8.000000 

 
> Z[Z>4 & Z<7]    #Select only those values of “z” between 4 and 7 
[1] 4.898979 6.324555 6.928203 

  
> Z[ceiling(Z)==7]  # Select all those values of “z” that round UP to (==) 7 

 [1] 6.324555 6.928203 
 
Referencing elements of a 2-dimensional variable or data frame: 

 Entering a small amount of data into your workspace: 
> Animal.ID<-c("A1", "A2", "A3", "A4", "A5") 
> total.mass<-c(3.3, 2.9, 2.8, 3.0, 3.4) 
> left.ear<-c(110.2, 105.6, 97.5, 101.5, 107.3) 
> hind.foot<-c(33.5, 33.9, 32.1, 32.8, 33.4) 
 
> body.data<-data.frame(Animal.ID, total.mass, left.ear, hind.foot) 
> body.data   #View rabbit data, which is a data frame 

  Animal.ID  total.mass  left.ear  hind.foot 
1         A1          3.3      110.2       33.5 
2         A2          2.9      105.6       33.9 
3         A3          2.8       97.5       32.1 
4         A4          3.0      101.5       32.8 
5         A5          3.4      107.3       33.4 
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 Referencing elements by location using [ ]  #[row, column] 
> body.data[1,]  #Returns row 1, all columns b/c the column index is empty 
    Animal.ID  total.mass left.ear  hind.foot 
1   A1   3.3        110.2  33.5 
 
> body.data[,1] #Returns column 1, all rows b/c the row index is empty 
[1] A1 A2 A3 A4 A5 
Levels: A1 A2 A3 A4 A5 
 
> body.data[2,3] #Returns the value in the cell in row 2 and column 3 
[1] 105.6 
  

 Referencing elements by name/location  #$ notation references variables or  
#columns within a data frame 

 > body.data[,2]  #Returns the values in column 2 by indexing 
[1] 3.3 2.9 2.8 3.0 3.4 

 
> body.data$total.mass #Returns the values in column 2 by $ notation (name) 
[1] 3.3 2.9 2.8 3.0 3.4 
 
> body.data[["total.mass"]] #Note, can also reference a data frame column with [[ ]] 

#[[ ]] should contain the column index or name (in " ")  
[1] 3.3 2.9 2.8 3.0 3.4 
 
> body.data[[2]][1]  #Can reference single elements by referencing the column  

#with [[ ]], then the required element with [ ] 
[1] 3.3 
 
 

 Referencing elements by condition   #Useful for selecting data from large 
#or complicated data sets 

 > body.data$total.mass[c(1,4:5)]     #$ w/ specific locations  
[1] 3.3 3.0 3.4 

  
>body.data$total.mass[body.data$total.mass>=3] #$ w/ conditional notation 
[1] 3.3 3.0 3.4 

 
Note: There are many different ways you could reference the same data. The approach 
you take will depend in part on your objective and experience. For example, all of the 
following will return the same values, but may be selected for use for different reasons: 
> body.data[,2][body.data$total.mass>=3] 
> body.data[body.data$total.mass>=3,2] 
> body.data[[2]][body.data$total.mass>=3] 
> body.data[["total.mass"]][body.data$total.mass>=3] 
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Referencing elements of a multi-dimensional variable: 

 May have objects with >2 dimensions (e.g. arrays) 

 Arrays can be thought of has having an Excel file with multiple worksheets, where each 
worksheet is a different matrix 

 Referencing follows the same general trend except a layer index is added  
o Array1[row, column, layer] 

 
Referencing elements of a list: 

 Each element of a list can store a variable (e.g., a vector, array, data frame, list, etc.)  

 [[ ]] is used to reference list elements 

 $ notation may be used if the list is named 

 Referencing of elements within a selected list element would be based on their data 
type (e.g., vector vs. data frame) and follow rule previously discussed. 

 
Example: Review results from ConGenR for mountain lion data 
Check that the results are actually in a list. 

 
Note: is.list() is a function that returns a logical response. Similar functions exist to test for 
alternative structures such as is.data.frame(), is.vector(), is.array(), and so on. 
 
View the names of the list with the names() function 

  
Note: if the list elements were not named, the function would return the value “NULL” 
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View the results stored in the 10th element of the list 

 
Note: Element 10 is named “Rates” and could have also been accessed with the following 

 
 
Furthermore, you can see that the list’s 10th element is a data frame, therefore you could 
reference data within this following the rules for a data frame. For example, to reference 
the entire first column, you could use 

 
 

THE R WORKSPACE 
 

Your R workspace is the internal memory on your R (the R you have downloaded onto your 
computer). It is the memory space where all of your user created objects (i.e., any variables or 
methods that you have created and stored) are maintained.  
 
Your R workspace does not contain system variables or methods, nor does it contain variables 
or methods derived from packages that have been installed. 
 
Managing objects in your workspace: 
ls()  #list of objects in workspace 
  > ls(pattern="^RSC")  #Use the pattern argument and grep search to find all  

#objects in the workspace that start with “RSC” 
  [1] "RSC1" "RSC2" "RSC3" "RSC4" "RSC5" 
 
rm()  #removes/deletes objects 
  > rm(RSC1)  #Remove/delete a single object by name 
  > ls(pattern="^RSC") #Search again and see that it has been removed 
  [1] "RSC2" "RSC3" "RSC4" "RSC5" 
   
  > rm(list=ls(pattern="^RSC")) #Remove/delete a group of objects by supplying 

#ls() with the pattern argument, as the “list” 
#argument to rm() 

  > ls(pattern="^RSC")  #Confirm that all the RSC objects were removed 
  character(0)  
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save.image()  #saves current workspace/objects 

 This can also be accomplished through the R GUI icons and file menu 

 Default saves workspace to .RData file 

 File argument can direct workspace to be saved to a different file  
 > save.image(file="RSC.RData")  
 
load()   #loads a previous workspace 

 This can also be accomplished through the R GUI icons and file menu 

 Default loads .RData (auto loads at launch) 

 File argument can identify workspace to be loaded 
 > load(file="RSC.RData")  
 
Redirecting R output from your workspace (not covered in the course, but important): 
source(file="file.name")   #Reads commands from file 
sink(file="file.name")    #Directs output to file 
sink()     #Resets sink to normal defaults 

 Useful for simulations with lots of code/results 
 
getwd()    #identifies working directory 
setwd()    #sets your working directory 
 
Entering data into your workspace: 
If you are entering only a small amount of data, manual entry is a reasonable approach, where 
the first entry for each vector corresponds to the first row, the second entry corresponds to the 
second row, and so on… 
 
> Animal.ID<-c("A1", "A2", "A3", "A4", "A5") 
> total.mass<-c(3.3, 2.9, 2.8, 3.0, 3.4) 
> left.ear<-c(110.2, 105.6, 97.5, 101.5, 107.3) 
> hind.foot<-c(33.5, 33.9, 32.1, 32.8, 33.4) 
 
data.frame()   #Assembles vectors of equal length into a data frame 
> body.data<-data.frame(Animal.ID, total.mass, left.ear, hind.foot) 
> body.data   #View data entered 
  Animal.ID  total.mass  left.ear  hind.foot 
1         A1          3.3      110.2       33.5 
2         A2          2.9      105.6       33.9 
3         A3          2.8       97.5       32.1 
4         A4          3.0      101.5       32.8 
5         A5          3.4      107.3       33.4 
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Importing data files into your workspace: 

 More frequently, you will have complex data sets that you wish to read into R from 
another file 

 Simplest importing format is a plain text file, such as .txt or .csv files  

 Plain text files are the lowest common denominator of file formats and can be viewed in 
a wide range of editors (they are also less likely to be influenced or become unreadable 
by updates to text editors and/or R) 

 Ecologists often store their data in Excel worksheets; these can be easily saved as a text 
(e.g., tab delimited) file through the save as function 

 While you could import Excel files directly, converting to a plain text file requires you to 
clean up the file (e.g., removing entries or summary data outside of the primary data 
table) 

 Note: R does not accept headers with spaces and thus will convert all spaces to a “.” 
 
read.table( )   #Reads in text data files 

 Returns a data frame object 

 Generic in that it can handle various delimiters (tab, comma, etc.) 

 Includes headers without problem 

 Allows for coding of missing values (R codes as NA) 
 
read.csv( )   #Reads in .csv files 

 Do not need to identify a delimiter 

 In some regions, commas replace decimals and could be problematic 
 
read.xls( )   #Reads in .xls files directly from Excel 

 Do not need to identify a delimiter 

 Data outside of the primary data table will influence importing (e.g., impacting the 
structure and data types of the data imported, introducing NAs) 

 
Steps to efficiently importing your data files: 
1. Identify your working directory (wd; data may or may not be in wd) 
getwd()  #Note that the format separating directories and folders may vary by  

#system, but using getwd() will show you how R needs the separators 
#identified. For example, “/” vs. “\” vs. “//” and so on 
#Also, note the MacOS do not have a C: drive, so you need to adjust 

> getwd() 
[1] "C:/Users/rlonsinger/Documents" #indicates for my system, I should use “/” 
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2. Identify and store your data’s path and file name  
> data.file<-"C:/Users/rlonsinger/Documents/RDatasets/harvest.data.txt"   

 Be sure to include the file type (e.g., .txt) 

 The data path needs to be passed as a character string, so it should be in quotes (" ") 

 The working directory can be abbreviated with ~, thus if your file is stored within your 
working directory (as it is here) we would shorten this to: 
> data.file<-"~/RDatasets/harvest.data.txt"  

 
3. Use read.table() to import data file and store as an object in your workspace 
> harvest.data<-read.table(file=data.file, header=TRUE, sep="\t", na.strings=-999)  

 Identify if the file has headers, the delimiter (in this case, tab delimited), and how 
missing values are coded  

 
Alternatively, if you imported the data earlier with the load.conference() function: 
> harvest.data<-MW.data[[1]] 
 
4. It is critical that you review that your data file was imported correctly 

 When importing data, R coerces data to either the numeric or factor data types. R does 
its best based on the structure of the data to infer the appropriate format, but often 
data are interpreted incorrectly  

 Typos or errors in data entry (e.g., extra decimal, letter within a number) can cause 
numeric variables to be imported as factors 

 Factor variables which researchers record as numeric characters may be incorrectly 
imported as numeric 

 Identifying numbers (e.g., hunt units, individual IDs) that should be considered as 
factors, are often coerced to numeric 
   

> harvest.data[1:5,] #Using the referencing approach already covered 
> head(harvest.data) #Using the head() to view only the first 6 rows as an alternative 
    Unit    Species    Sex      Age     Weight          Method 
1    6        1         1     juvenile          157                archery 
2   55       2         1     yearling          230      muzzleloader 
3   33       3         2          adult          223                    rifle 
4   27       1         2     juvenile          250               archery 
5   26       3         1          adult          211      muzzleloader 
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5. It is important that you check the data structures as well (how the data is stored in R) 

 Common methods used to evaluate data include str(), attributes(), summary(), class() 
 
> str(harvest.data) #Method to view the data structure 
 
'data.frame':   25 obs. of  6 variables: 
 $ Unit:        int  6 55 33 27 26 15 39 15 61 60 ... 
 $ Species:  int  1 2 3 1 3 2 2 1 1 3 ... 
 $ Sex:       int  1 1 2 2 1 1 2 2 2 1 ... 
 $ Age:      Factor w/ 3 levels "adult","juvenile",..: 2 3 1 2 1 3 2 2 2 2 ... 
 $ Weight:   int  157 230 223 250 211 158 203 238 169 NA ... 
 $ Method: Factor w/ 3 levels "archery","muzzleloader",..: 1 2 3 1 2 2 1 2 1... 
 

 Note that two variables (columns), Species and Sex, are saved as integers. We may want 
these to be saved as categorical variables, or factors, for subsequent analyses and data 
management procedures 

 
We could modify these two variables (or others) using the R GUI’s Data editor (Edit > Data 
editor…), or the fix() function. While this approach may seem easier, it is limited (e.g., can only 
convert between numeric and character data types for columns) and does not document 
changes that have been made to the dataset (which is generally a bad practice).  
 

 Alternatively, we can make these changes very simply with the following commands 
(take a moment to look up the different functions and understand what is occurring) 

 
> harvest.data<-within(harvest.data, Species<-factor(Species)) 
 
#within() function indicates that you want to work within the harvest.data data set and  
#therefore you do not need to specify harvest.data$Sex (you can just reference Sex) 
 
#within the harvest.data, convert Species to a factor data type and store back to Species, 
#then, store the data frame back to harvest.data 
 
> harvest.data<-within(harvest.data, Sex<-factor(Sex, labels=c("M", "F"))) 
 
#Complete the same action for the variable Sex, but now also convert the factor level labels   
#to "M" and "F", as opposed to 1 and 2 (how they were initially entered) 
 
#to view additional arguments for these functions, check the help(within) and help(factor)  
#support documentation 
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6. Re-check the data structures 

 Both Species and Sex are now factors! 
 

> str(harvest.data) 
'data.frame':   25 obs. of  6 variables: 
 $ Unit:        int  6 55 33 27 26 15 39 15 61 60 ... 
 $ Species:  Factor w/ 4 levels "1","2","3","4": 1 2 3 1 3 2 2 1 1 3 ... 
 $ Sex:       Factor w/ 2 levels "M","F": 1 1 2 2 1 1 2 2 2 1 ...  
 $ Age:      Factor w/ 3 levels "adult","juvenile",..: 2 3 1 2 1 3 2 2 2 2 ... 
 $ Weight:   int  157 230 223 250 211 158 203 238 169 NA ... 
 $ Method: Factor w/ 3 levels "archery","muzzleloader",..: 1 2 3 1 2 2 1 2 1... 
 
> View(harvest.data)  #View data in a spreadsheet format with scrolling capabilities 
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Note: The importance of checking your data structures cannot be understated. Many statistical 
procedures determine what to do based on data types, or only operate with particular data 
types. 
 
Example: 
lm(j~x)   #lm() = linear model and models j as a function of x 
   #~ indicates a modeling relationship 
 

 If x is numeric, performs a linear regression 

 If x is a factor (categorical), performs and ANOVA 
 
tapply(j, x, method) #implicit loop that applies a method to a continuous variable (j) by levels  

#of a grouping variable (x) 
#If is.factor(x)==FALSE, tapply() will fail 

 
Exporting data files from your workspace: 

 Exporting a data file allows you to save a backup or work on the dataset in an alternative 
format (e.g. Excel) 

 
write.table ()   #Exports data as text files 

 Arguments are similar to read.table() 

 Default for row.names=TRUE 

 Default for quote=TRUE 
 
Steps to efficiently exporting your data files: 
1. Identify and your data path and file name as before (remember to include the file extension!) 
> data.file<-"C:/Users/rlonsinger/Documents/RDatasets/harvest.data.modified.txt"  
 
2. Use write.table() to export data file 
> write.table(harvest.data, file=data.file, quote=FALSE, row.names=FALSE, sep="\t") 

 First identify the object to export, identify the data path and file name as .txt file, and 
change necessary defaults 

 

METADATA 
 
Metadata includes all supporting information for a data set. Although there are ways to imbed 
some metadata into files within R, R is not efficient at storing metadata. 
 
Examples of Metadata: 

Variable names (column names)   Maps 
Units of measurements    Known data issues, deficiencies, or errors 
Data collection details    … 
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Tips for storing and tracking metadata in R: 
1. Utilize descriptive but manageable names  

 Columns, files, objects, etc. 
2. Use the hashtag notation (#) to add context and annotation to files 

 Can be used in scripts, but also in imported data to tell R what not to read in as data 

 Can be used to reference locations of larger metadata that cannot be embedded 
(e.g. maps) 

3. Store your scripts as essential metadata 

 These will provide a detailed record on how you read in, manipulated/modified, 
analyzed, and interpreted your data 

 These will allow you to verify steps, make changes, rerun analyses under different 
conditions, and/or run the same or similar analyses on new data sets 

 
PACKAGES & SCRIPTS 

 
Packages and scripts represent grouped objects (such as variables and/or methods) that can be 
downloaded as a single file 
 
Packages: 
Download and install packages from the CRAN using package tab in the R GUI 

 
 Within the “Packages” tab, click “Set CRAN mirror…” and select the CRAN closest to you 

 Return to the “Packages” tab, click “Install package(s)…” and select the package desired 
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A library is a set of packages 
library()   #view all installed packages 

 Similar to using ls() to view your objects, with library() you can view installed packages 

 Only need to install a package once (unless requiring a new version or updated) 

 Must load necessary packages during each session 
 
library(package) #load installed packages by passing the package to library() 
> library(unmarked) 
 
Scripts: 
Download or copy scripts from repositories or websites 

 Scripts are a collection of code that is not formally a package 

 Often released prior to formal package development 
Once downloaded, scripts are generally stored in the workspace as objects 
ls()   #view objects in the working directory 
 
Note: you may still need to load a script after downloading or load supporting packages 

 Loading scripts can often be accomplished by sourcing in the code (or simply copying 
and pasting it into the R console) 
 
Example:      #Load ConGenR script 
> source("~/R_Datasets/ConGenR/ConGenR.r") 
> load.ConGenR() 

 
DATA MANAGEMENT 

 
It is often desirable, or necessary, to manipulate and manage your data within R 

 Adding data to current data frames  

 Deleting data from data frames 

 Sorting data 

 Storing results of analyses back to a data frame 

 Etc. 
 
Common data management methods: 
cbind()   #modify objects by adding, or binding, columns 
rbind()    #modify objects by adding, or binding, rows 
merge()   #combine two data sets by common fields 
sort()    #sort a vector  
order()   #determine the sort order of a vector 
subset()   #subset selects a conditional portion of a data frame  
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Example: You acquired harvest data for another year, and want to include it in the analyses 
Import the new harvest data set, then view the names of the columns for each. Notice the new 
data set has a new column indicating the year of harvest.  
 
If you imported the data earlier with the load.conference() function: 
> harvest.data11<-MW.data[[2]] 
 
> names(harvest.data) #Use the names() to view the columns in the original data 
[1] "Unit"    "Species" "Sex"     "Age"     "Weight"  "Method"  
 
> names(harvest.data11) #Use the names() to view the columns in the new data 
[1] "Unit"    "Species" "Sex"     "Age"     "Weight"  "Method"  "Year" 
 

 To combine the two data sets we must first add the harvest year to the original data set 
and then combine the two data sets.  

 
Use the cbind() function to add the harvest year to the original data set from 2010 
cbind(df, new column)  #adds column to a data frame; additional arguments can be used 
 
> harvest.data10<-cbind(harvest.data,Year=rep(2010,length(harvest.data[,1]))) 
 #Add a column named “Year” to harvest.data and save it as new data frame 
 #To create the new column, repeat 2010 as many times as the data frame is long 
 
> head(harvest.data10) #view the first 6 rows and see the year was successfully added 
     Unit Species Sex Age Weight Method Year 
1 6 1 M juvenile 157 archery 2010 
2   55       2    M yearling   230  muzzleloader  2010 
3   33       3    F   adult     223         rifle  2010 
4   27       1    F  juvenile   250       archery  2010 
5   26       3    M     adult     211  muzzleloader  2010 
6   15       2    M  yearling   158  muzzleloader  2010 
 
View the 2011 data structure. Recall that we had modified the Sex and Species variables in 
harvest.data10, so these are both factors now. We will need to do the same for harvest.data11 
  
> head(harvest.data11) 
    Unit  Species  Sex      Age  Weight    Method  Year 
1   61       4    1  adult 190       archery  2011 
2   42       4    1 yearling   179  rifle 2011 
3   42       3    1   yearling  242         rifle  2011 
4   21       3    1  juvenile   216       rifle 2011 
5   49       4    1     adult     156  archery 2011 
6   26       3    2 adult 199  muzzleloader  2011 
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> harvest.data11<-within(harvest.data11, Species<-factor(Species)) 
> harvest.data11<-within(harvest.data11, Sex<-factor(Sex, labels=c("M", "F"))) 
 
Use the rbind() function to combine the two data sets 
rbind(df, additional rows) #adds rows to a data frame; additional arguments can be used 
 
> harvest.data.combined<-rbind(harvest.data10, harvest.data11) #2010 first, then 2011  
  
> harvest.data.combined[c(1:3,48:50),] #View first 3 and last 3 rows of combined data 
     Unit Species Sex Age Weight Method Year 
1    6      1    M  juvenile   157       archery  2010 
2    55     2    M  yearling   230  muzzleloader  2010 
3   33     3    F    adult     223         rifle  2010 
48  45     4    M  adult     212  muzzleloader  2011 
49  51     4    M  yearling   250       archery  2011 
50  30     4    M  juvenile   201  muzzleloader  2011 
 
Example: You are investigating mountain lion fitness and you have 100 collared animals 

 These animals are captured annually to collect fitness measures 

 You have 2 different data sets. The first is a dataset representing Individual IDs, their 

date of initial capture in 2008, and their weight at time of capture.  

 The second data frame contains the date and weight of all 100 animals during their 

recapture in 2009. 

 You want to combine these two data sets, but want each individual to be represented 
by only a single row.  

 
Import the data for 2008 and the data for 2009. Store as mt.lion.data08 and mt.lion.data09, 
respectively. If you imported the data earlier with the load.conference() function: 
> mt.lion.data08<-MW.data[[3]]; mt.lion.data08<-MW.data[[4]] 
 
> mt.lion.data08[1:4,] #view first 4 rows of 2008 capture data 
 PUCO.IDs  Date.of.Capture1   Weight1 
1       64F  19Nov2008  127.4343 
2       56F  12Nov2008  133.9920 
3       26M         16Dec2008  119.4594 
4  59M         10Nov2008  111.4275 
 
> mt.lion.data09[1:4,] #view first 4 rows of 2009 capture data 
 PUCO.IDs  Date.of.Capture2   Weight2 
1      64F    2Dec2009 118.6665 
2    5M    29Oct2009  114.5413 
3       88F   22Nov2009  121.0169 
4  42M 13Dec2009  115.2921  
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Combine the data sets based on a common field 
merge(df1, df2) #combine by common fields, additional arguments can be used 
 
> mt.lion.data0809<-merge(mt.lion.data08, mt.lion.data09) 
 #merge the two data sets, there is only one common field so you do not need to identify 
 
>mt.lion.data0809[1:4,] #view first 4 rows of merged data 
        PUCO.IDs   Date.of.Capture1  Weight1  Date.of.Capture2   Weight2 
1      100F           10Nov2008     126.90221       15Dec2009             117.7457 
2       10M            25Sep2008               92.83458         9Nov2009               118.3425 
3       11M            18Nov2008              95.32404         5Dec2009                118.7353 
4       12F              14Nov2008              114.31999       15Nov2009             119.7567 
 
How could we reorder these columns? 
How could we drop columns if there are some data that do not want to include? 
> mt.lion.data0809[,-c(2,4)] # - indicates that columns 2 and 4 should be dropped 
> mt.lion.data0809[,c(1,2,4,3,5)] #providing the column indices in the desired order reorders 
 
Now: sort by the lion’s weight at time of initial capture in decreasing order 
sort(vector)  #Sorts a vector but does not sort a data frame 
 
> sort(mt.lion.data0809) #if we pass sort() a data frame, we get an error 
Error in `[.data.frame`(x, …) : undefined columns… 
 
> sort(mt.lion.data0809$Weight1, decreasing=TRUE)  
[1] 135.78118 133.99202 133.78551 133.52239 133.49324 133.22172 132.53796 
[8] 132.05205 131.48827 130.79640 130.61864 130.42739 129.59780 129.05274 
[15] 129.02911 128.38725 128.08248 127.43430 127.43111 127.07528 127.03362 
…… 
[99]  94.29917  92.83458 
 

 If we pass sort() a column (vector) from a data frame, it returns only that vector sorted, 
not the data frame, which is what we desire 

 
Finding the order of a vector can be used to identify the sorted location of each element 
order(vector) #Determines the sort order and can be used to manipulate data frames 
 
> order(mt.lion.data0809$Weight1)  
[1]   2  31  54   3  83  75  30  99  76  89 … 

 Orders elements in increasing order, thus element 2 is the smallest value 

 Setting the argument decreasing=TRUE will change the direction of the order 
 
> ord<-order(mt.lion.data0809$Weight1, decreasing=TRUE) #Save the decreasing order 
>mt.lion.data0809<-mt.lion.data0809[ord,] #Apply the order as the row reference  
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> head(mt.lion.data.0809) #after sorting with order(), view the first 6 rows 
       PUCO.IDs    Date.of.Capture1  Weight1  Date.of.Capture2 Weight2 
9        17F             27Dec2008  135.7812      10Oct2009          118.0855 
52      56F             12Nov2008  133.9920      15Sep2009                116.7297 
28      34M           6Nov2008   133.7855      8Sep2009                  118.3936 
87      88F             14Nov2008  133.5224      22Nov2009               121.0169 
59      62M           17Sep2008  133.4932      27Dec2009               117.0685 
77      79F             5Sep2008   133.2217      27Oct2009                114.2977 
    
Next: we want to select only Males (indicated by M in the PUCO.IDs) 
We need to first split out the Sex from the PUCO.IDs 
 
Use the ‘stringr’ package” 

 Search your library to see if you already have it 

 If not, install the ‘stringr’ package 
 
 
> library(stringr)   #Load the stringr package 
 
str_sub(vector, start char idx, end char idx) #Select only the portion of each vector  
    #element from the indices of the start and  
    #end characters in the character string 
    #Note: a “-“ character index starts counting  
    #from the right 
> str_sub(mt.lion.data0809$PUCO.IDs, -1, -1)  
[1] "F" "F" "M" "F" "M"…  
> factor(str_sub(mt.lion.data0809$PUCO.IDs, -1, -1)) 
[1] F F M F M… 
Levels: F M 
 
We want to store sex as a factor back to the data frame as a new column 
> mt.lion.data0809<-cbind(mt.lion.data0809, Sex= Insert.Code.Above.Here) 
> mt.lion.data0809<-cbind(mt.lion.data0809, Sex=  
   factor(str_sub(mt.lion.data0809$PUCO.IDs, -1, -1))) 
 
Use subset() to select only males from the data set  
subset(df, condition)    #select a portion of a data set 
 
> mt.lion.data0809M<-subset(mt.lion.data0809, mt.lion.data0809$Sex== "M") 
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DESCRIPTIVE STATISTICS 
 
Common basic descriptive statistics: 
median()   #returns the median value from a vector 
mean()   #calculates the average value of a vector 
min()    #returns the minimum value from a vector 
max()    #returns the maximum value from a vector 
range()   #returns both the min and max from a vector 
sd()    #calculates the standard deviation of a vector 
var()    #calculates the variance (sd2) of a vector 
sum()    #calculates the total sum for a given vector 
Note: All of these functions work as you might expect, with the first argument being a vector 
for which you want the statistic  

 NA values will result in a calculation of NA, unless the argument na.rm=TRUE 

Example: R provides example data sets as part of the base package. The “trees” dataset 
includes the girth, height and volume for Black Cherry Trees 
 
Take a look at the data structure using head()  
> head(trees) 
  Girth  Height  Volume 
1     8.3      70    10.3 
2     8.6      65    10.3 
3     8.8      63    10.2 
4   10.5    72    16.4 
5   10.7    81    18.8 
6   10.8    83    19.7 
 
For summary statistics, should first check for missing values: 
> is.na(trees)  #is.na() returns a logical response of TRUE or FALSE regarding if it is a NA 
 Girth  Height  Volume    
 [1,]  FALSE  FALSE   FALSE  The output is truncated here, but in general it will return  
 [2,]  FALSE  FALSE   FALSE  a TRUE or FALSE for each cell in the data frame 
 [3,]  FALSE  FALSE   FALSE 
  …      This may be an inefficient way of determining if there are  
 [31,] FALSE  FALSE   FALSE  NA values for very large data frames 
 

> sum(is.na(trees)) #sums up all of the cells returned by is.na() as TRUE 
[1] 0   #a more efficient way of assessing the number of NA values, in this case 0 
 

Calculate the summary statistics for tree girths: 
> median(trees$Girth); mean(trees$Girth)    
[1] 12.9 
[1] 13.24839 
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> sd(trees$Girth); var(trees$Girth) 
[1] 3.138139 
[1] 9.847914 
 

> min(trees$Girth); max(trees$Girth) 
[1] 8.3 
[1] 20.6 
 

> range(trees$Girth) 
[1]  8.3   20.6 
 

Again, these only work on vectors. summary() works on both vectors and data frames, but does 
not provide all of the summary statistics that may be desirable 
summary() #supplies descriptive statistics for vectors or data frames 
 
> summary(trees$Girth) 
   Min.   1st Qu.   Median   Mean   3rd Qu. Max.  
   8.30    11.05     12.90     13.25     15.25     20.60  
 

summary(trees) 
     Girth                Height            Volume      
 Min.   : 8.30     Min.   :63    Min.   :10.20   
 1st Qu.:11.05    1st Qu.:72    1st Qu.:19.40   
 Median :12.90    Median :76    Median :24.20   
 Mean   :13.25    Mean   :76    Mean   :30.17   
 3rd Qu.:15.25    3rd Qu.:80    3rd Qu.:37.30   
 Max.   :20.60    Max.   :87    Max.   :77.00   
 
Dealing with NAs: 
 
NAs often do not respond to the same methods as other values 
 
For example, suppose we had a vector x and wanted to remove all values that were == 0. 
This could be accomplished with  
> x<-x[x!=0]  #Return and store the vector, excluding those elements that were 0 
 
This will not work with NAs though. Instead, need to apply the is.na() 
> x<-x[!is.na(x)] #Remove NAs–compare to x[x!=NA] 
 
Other common NA methods include: 
> x[is.na(x)]<-0 #Replace NAs with 0 
> x<-na.omit(x) #drop NAs from vector x   
 



31  
 

IMPLICIT LOOPS 
 
There is typically a need to apply descriptive statistics (or other methods) to multiple, specific 
variables or columns in a data frame 

 This can be accomplished using implicit loops: 
 
sapply() – returns a simple data type (i.e., vector) 
tapply() – returns a table data type 
 
Lets utilize a data set with body measurements for ringtails to explore each of these functions 
> data.file<-"C:/Users/RLonsinger/Documents/R_Datasets/ringtail.data.txt" #Identify file 
> ringtail.data<-read.table(file=data.file,  header=TRUE, sep="\t")    #Import 
 
Alternatively, if you imported the data earlier with the load.conference() function: 
> ringtail.data<-MW.data[[6]] 
 
> View(ringtail.data)  #Take a look at the data format 
 
> length(ringtail.data[,1]) #determine how many observations (rows are in the data set 
[1] 184  
 
Note: There are many other ways to get the number of rows/observations - e.g., 
str(ringtail.data), attributes(ringtail.data), length(ringtail.data$ID), or nrow(ringtail.data) 
 
> names(ringtail.data[5:10]) #identify columns that we want to apply the statistical methods to 
[1] "ROSTRUM"   "LEFT.EAR"  "R.HIND.FT" "HEAD"      "BODY"      "TAIL" 
 
sapply() applies a method to any number of columns and returns the results as a vector 
sapply(data frame, method,… )  #… can pass arguments to the method being applied 
 
> sapply(ringtail.data[,5:10], mean, na.rm=TRUE) 
 ROSTRUM  LEFT.EAR     R.HIND.FT   HEAD           BODY              TAIL  
 3.100000    4.720139    6.519310    9.474766    31.412281      36.008904  
 
You could pass user defined functions to sapply() as well, if you wanted to perform the same 
procedure over multiple columns in a data frame! 
 
tapply() allows you to condition the descriptive statistics of one variable with another factor 
variable (i.e., one that is nominal or categorical) and returns a table 
tapply(df$continuous.variable, df$grouping.variable, method, …)  

# …can pass additional arguments to the method  
> tapply(ringtail.data$WEIGHT, ringtail.data$SEX, mean, na.rm=TRUE) 
 F           M  
 967.6471  1209.3776 
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PARENTHESES & BRACKETS 
 
Parentheses: 

 Parentheses contain an expression to evaluate and influence the order of operations 
> 3 * 3 + 6  #Performs the multiplication first, then the addition 

 [1] 15 
 

> 3 * (3 + 6)  #Parentheses alter the order of operations, performing  
[1] 27   #operations inside the function first 

#Interprets ( ) as the function ( ) 
 
Square brackets: 

 Generally follows an object’s symbol and contains indices for data within an object 
 

[ ] Generally follows an object symbol – e.g., x[1] 
Contains indices for data within an object 
 

[[ ]] Contains indices for data within an object 
 More commonly used with lists, but may be used elsewhere 
 
Note: Square brackets are commonly multi-dimensional and/or stacked 
E.g., ListA[[1]][1,1]  #Return the element in row 1 and column 1 of element 1 in ListA 

   #Suggest that element 1 of ListA must be a 2D object 
 
ListA[[1]][,1][1] #Selects the same data as above 
   #Selects the first element in column 1 of element 1 in ListA 
 
df[[1]]   #Returns the first column of data frame df as a vector  
 

Brackets can be used to simple subsetting, sorting, and data management   
 
> subset(mt.lion.data0809, mt.lion.data0809$Sex=="M")  #Subset and return only the males 
> mt.lion.data0809[mt.lion.data0809$Sex=="M", ]  #Select males via a conditional index 
 
> mt.lion.data0809[mt.lion.data0809$Sex=="M" & mt.lion.data0809$Weight2>125, ] 
       #Select only males >125 lbs in year 2 (2009) 
 
Curly brackets: 

 Evaluates a series of separate expressions and returns only the last expression 

 Often used to group expressions for functions and looping structures 
 

 { } Contents evaluated in the current working environment 
 f{ } Contents evaluated in a new environment 
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CONDITIONAL STATEMENTS 
 
Two functions are commonly used for conditional statements: 
if( )  #evaluates a logical condition for a single value (not a vector) 
ifelse( ) #evaluates logical conditions for a vector 
 
General structure for if( ): 

if(condition) true_expression else  false_expression 
 

If multiple expressions are carried out under one or both conditions, structure is often: 
if(condition){ 
  true_expressions 
  } else  false_expression 
 
Or: 
if(condition){ 
  true_expressions 
  } else { 
  false_expressions 
 } 
 
> if(trees$Height[1]>trees$Girth[1]) "Correct" 
[1] "Correct" 
 
> if(trees$Height[1]>trees$Girth[1]) "Correct" else "Potential Issues" 
[1] "Correct" 

 
General structure for ifelse( ): 

ifelse(condition, true_expression, false_expression) 
 

> a <- c(6:-4)   
> sqrt(a)  #Generates warning  
[1] 2.45  2.24  2.00  1.73  1.41  1.00  0.00  NaN  NaN  NaN  NaN 
 
> ifelse(a >=0, a, NA)   #Change neg values to NA 
[1]  6  5  4  3  2  1  0 NA NA NA NA 
 
> sqrt(ifelse(a >= 0, a, NA))   #Avoids error, passes NA instead of NaN to sqrt( ) 
[1] 2.45  2.24  2.00  1.73  1.41  1.00  0.00  NA  NA  NA  NA 
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LOOPING LANGUAGE 
 

Extremely valuable for processing large datasets, repeating processes, and simulations 
 
Primary looping constructs: 
repeat{expression} #Repeat an expression – repeat followed by { } rather than ( )  

> i <- 10      #Initialize a vector i with the value  
> repeat{      #print(i) = print i on each loop 
 if(i > 100) break else {print(i); i <- i + 10} #Without conditions  infinite loop 
 }      #the keyword “break” stops looping 

 
while(condition) expression #Repeat an expression while a condition is TRUE  

> i <- 10 
> while(i <=100) {   #if conditions are never met, will be an infinite loop 
 print(i); i <- i + 10}  #Can use the keyword “break” to stop looping 
 }     

 
for(var in list) expression #Iterate through elements of a vector or list and evaluate an  

#expression on each element  
> b <- seq(10, 100, 10)  #Vector of 10-100, by 10, with the sequence 
> for(i in b) print(i)   #Print i, which indicates element i 
 
> for(i in seq(10,100,10)) print(i) #Or could imbed seq()  into the for()  
 
Note: The function may not operate as desired if the vector/list is not numeric and/or 
the expression involves complex methods. On the fly conversion to numeric (e.g., with 
as.numeric()) may influence the desired order of operations (i.e., the order of the 
elements over which are looped). 
 
Consequently, it may be better practice to loop over elements in a vector/list 
sequentially by employing a combination of “:” and the length() function.  
 
> b <- seq(10, 100, 10)  #Vector of 10-100, by 10, with the sequence 
> for(i in 1:length(b)) print(b[i]) #Print element i of vector b on each loop 
 

Commonly used functions to help control loops/output: 
if( )  #Conditional test for single value 
ifelse( )  #Conditional test of a vector 
length( ) #Return the length of a vector 
sum( )  #Return the total cumulative sum of arguments 
c( )  #Concatenate or string together values  
append( ) #Appends values to a vector at a specified location 
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Looping Example with mountain lion dataset (Dataset = mt.lion.data0809): 
Steps to consider: 

1. Calculate the change in body weight for each animal from 2008 and 2009 
2. Store this new metric as a column in the data frame 
3. Select only those animals that have lost weight 

 
In Excel, we might accomplish this by selecting an empty column, calculating Weight2 – 
Weight1 and copying the formula down through the data set, then labeling the column in some 
way. To select those that have lost weight we may then sort by change in weight. 

 
 
Translate this process into an R loop: 

 Calculate the change in body weight for each animal from 2008 and 2009 
> Delta.weight <- NULL #Create and empty vector to store new data 
 
To calculate a weight change for the first row of the dataset in R, simply: 
> mt.lion.data0809$Weight2[i]-mt.lion.data0809$Weight1[i]  #if i = 1 
 
Store value to the end of the new data vector 
> Delta.weight<-append(Delta.weight, __insert calculation above for row i____) 
 
Pull this all together and use a for loop to do this for each row 
> Delta.weight <- NULL #Create and empty vector to store new data 
> for(i in length(mt.lion.data0809$PUCO.IDs)){ 
 Delta.weight<-append(Delta.weight, 

      mt.lion.data0809$Weight2[i]-mt.lion.data0809$Weight1[i]) 
 } 
 

 Store this new metric as a column in the data frame 
> mt.lion.data0809<-cbind(mt.lion.data0809, Delta.weight) 
 

 Select only those animals that have lost weight 
> mt.lion.data0809[mt.lion.data0809$Delta.weight<0, ]  #Or use subset()  
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USER DEFINED FUNCTIONS 
 

We often develop code that we want to reuse and/or incorporate into more complicated 
scripts, simulations, and/or packages 

 User defined functions provide a way to encapsulate a set of expressions and quickly recall 
and use them 

 Operations an variables operated on within a function are done so in a separate 
environment 

 
function (arguments) body #Create a function that takes arguments and executes the  

#expressions in the body  

 arguments are symbol names which may or may not have default values 

 body is a collection of expressions to be executed when the function is called 

 { } can be used as a wrapper for long body expressions 

 By default, user defined functions return the result of the  last evaluated expression 
 
Example: methods for determining the mean and standard deviation are incorporated in the 
base R download (i.e., mean() and sd(), respectively). Suppose you regularly need to calculate 
the standard error with the following general formula 
 
 Standard Error = Standard Deviation/ Square root of N 
 
where N is the number of observations in the data set 
 
This could be calculated in R for a vector “x” with: 

> sd(x)/sqrt(length(x)) 
 
If the data contains NAs, then the calculation returns NA unless you set na.rm=TRUE: 
 > sd(x, na.rm=TRUE)/sqrt(length(x))     
 
Still, if NAs do exist, the above will calculate the standard deviation based on the number of 
non-NA values, while the square root of N (i.e. , sqrt(length(x))) will be calculated based on the 
total number of elements in the vector (including NAs). The following can correct this: 
 > sd(x, na.rm=TRUE)/sqrt(length(x) - sum(is.na(x))) 
 
This can be stored as a user defined function with function(): 
 > SE <- function(x){ 
  sd(x, na.rm=TRUE)/sqrt(length(x) - sum(is.na(x))) 
  } 
 
And used to quickly assess the standard error of a continuous variable: 
 > SE(x=ringtail.data$WEIGHT) 
 [1] 16.50207 
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To return more than just the last expression evaluated, employ the return() function 
return(arguments)  #contained within a function, tells the function what to return 
 
Re-write SE function to return not only the standard error, but also the mean and a count of 
any missing values removed during the calculation: 
 > SE.list <- function (x){ 
  SE<-sd(x, na.rm=TRUE)/sqrt(length(x)-sum(is.na(x))) #Same as before 
  return(list(Mean = mean(x,na.rm=TRUE),    #Now return a named 
            SE = SE,     #list with mean, SE, 
            NA.removed = sum(is.na(x))))   #and number of NAs  
  }        #removed 
 

SIMULATIONS 
 

Scripts that repeat some modeling process many times over 

 Usually thousands of times, under variable conditions, and/or until some conditions is met 

 Generally incorporates some form of stochasticity 

 Records the outcome of each replicate 

 Often interested in summary statistics and/or distribution of the outcomes 

 May consider different conditions to draw inferences on the influence of different 
parameter values 

 
The conditions varied will depend on the research question(s) 

 Sample size 

 Statistic used 

 Parameter estimates (e.g., those with uncertainty) 

 Variance, error, etc. 

 Distributions 
 
Simulations rely heavily on looping constructs, with loops being nested for different parameters 

 Each loop tends to iterate over different conditions for a different parameter 
 
Example: Use population estimates over 39 years for a brown bear population to conduct a 
count-based population viability analysis (PVA). A simple (perhaps the simplest) count-based 
PVA calculates a mean population growth rate (and associated standard deviation) from the 
data provided, then uses this summary data to project the population forward some period of 
time while incorporating stochasticity. It repeats this process many times, then summarizes the 
results by determining the proportion of projections that were below some threshold. 
 
Steps to consider: 

1. Import the PopEstimates.txt data set 
2. Calculate population growth rate (lambda) for each time step (year) 

 Where lambda for a given time step is Nt+1/Nt  ( this will require a loop) 
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3. Calculate the mean and SD of lambdas 

 mean(vector) 

 sd(vector) 
4. Simulate population viability for 100 years 

 Determine a starting value for each simulation (Nhat=last value of PopEstimates) 

 Assume Lambda~Normal(mean, SD)  

 Randomly select lambda for each year via rnorm( ) 
5. Conduct 100 iterations 
6. Summarize the result as Pr(Extinction) 

 
Next: Consider how you might modify/add to this in order to evaluate sensitivity to variation 
(standard deviation) in lambda 

 What additional loops would be required? 

 What levels of SD should you consider? 

 How can you store and summarize the output 
 
Next: Convert this simulation code into a user defined function 

 Which variables should be included as arguments? 

 Which of these arguments are required entries and which should have default values? 

 What control flow (e.g., conditional statements) would help make the function more 
user friendly? 

 How should the output be returned to the user?  
 
Finally: Use this new user defined function within a short script/loop to evaluate the influence 
of both variation in SD and also initial population size. View the final results as a data frame. 
 

Note: One possible solution is provided in the supporting MW.Workshop.r file 
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GRAPHICS 
 
Objectives: (1) provide examples of some of R’s graphing capabilities and (2) review some of the 
commonly used arguments 
 
R has the ability to produce visually appealing graphics 

 Very easy to plot basic graphics for exploratory purposes 

 Publication quality graphics can require quite a bit more use of settings (arguments) 

 Recommend creating/retaining code for quality graphics 

 Recommended packages: graphics and lattice 
 
Common plotting methods (review the usage via the help() for details on arguments): 
plot() #Scatterplots   stripchart() #Strip Charts   
hist() #Histograms    boxplot() #Box Plots 
pie() #Pie Charts   barplot() #Bar Plots 
 
Common methods for modifying graphics: 
par()    #set graphical parameters 
lines()   #add points joined with line segments to a plot 
points()   #add a sequence of points to a plot 
abline()   #add straight lines to a plot  
axis()    #adds an axis to a plot  
mtext()   #adds text to one of the four margins 
text()    #adds text at specified location in a plot 
legend()   #adds a legend to the plot 
 
Common arguments to graphing and plotting methods: 
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> plot(trees$Girth, trees$Volume, col="red", main= "Main Title", xlab="Girth", pch=2) 

 
 
Examples of plots created in R include the following manipulations or changes: 

 Add multiple data series to the same plot with two y axes 

 Add standard error bars, a asymptote line, and a legend 
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Plot multiple graphics together, add fitted lines, and modify x and y labels  

 
> hist(mc.rate.ra.lda.s2, freq=FALSE, ylab="DENSITY", xlab= "APER", xlim=c(0,100), 

ylim=c(0,0.15))  

 
 Normal distribution added with lines(), vertical line and labels added with lines() and text() 
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> pie(harvest.data.plot, main="Method of Take",labels=levels(harvest.data.combined$Method), 
cex=1.5,clockwise=TRUE, col=rainbow(  length(harvest.data.plot))) 
 
> barplot(harvest.data.plot, main="Method of Take", names.arg= 
levels(harvest.data.combined$Method), cex.main=2, cex.names=1.5, col=rainbow(length 
(harvest.data.plot))) 
 

  
> par(mfrow=c(2,1)) #change parameters to plot two plots in a format of 2 rows and 1 column 
> stripchart(ld$LD1~ ld$PopAssigment, xlab="LD1", ylab="Clusters") 

 
 Means were added as red “X”s using points() 

 Second plot code is excluded, but would be comparable 
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> boxplot(WEIGHT~SEX, data=ringtail.data) # “~” indicates a modeling relationship  

# with numeric ~ grouping 
 

> boxplot(WEIGHT~SEX, data=ringtail.data, notch=TRUE) 

 
 
 
> stripchart(WEIGHT~SEX, data=ringtail.data, method="jitter", col="red") 
> boxplot(WEIGHT~SEX, data=ringtail.data, horizontal= TRUE, add=TRUE, boxwex=.5, 
outline=FALSE)    #add=TRUE plots the second plot over the first 

 
 
 

 


